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Pillars in Machine Learning: Testing
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Supervised Evaluation

Test set is fully annotated
Ground truths are provided

.
.

image IabEI




Supervised Evaluation

Test set is fully annotated
Ground truths are provided

. N D — #4 #4
. classifier #6 #5

image prediction label




Supervised Evaluation
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In-distribution Benchmarks
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Our Research: Unsupervised Evaluation

Test set is unlabeled How to evaluate model
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Only images are provided without labels?
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Evaluation Beyond Textbook
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We Encounter This Problem Many Times

Deploy face recognition model in a new airport
Deploy a 3D object detection system to another city

We can’t quantitatively measure the model accuracy like we usually do!

We need to annotate the test data
When the testing environment is changed, we need to annotate again




Our Research: Unsupervised Evaluation
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Given

- A training dataset

- A classifier trained on this dataset
- A test set without labels

Deng, Weijian, and Liang Zheng. “Are Labels Necessary for Classifier Accuracy Evaluation?”, In CVPR, 2021; TPAMI 2022



Our Research: Unsupervised Evaluation
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Given
- A training dataset We want to estimate:
- A classifier trained on this dataset accuracy on the unlabelled test set

- A test set without labels

Deng, Weijian, and Liang Zheng. “Are Labels Necessary for Classifier Accuracy Evaluation?”, In CVPR, 2021; TPAMI 2022



Our Research: Unsupervised Evaluation

* Accuracy prediction based on dataset shift

e Self-supervision for unsupervised evaluation



Accuracy Prediction Based on Dataset Shift
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Accuracy Prediction Based on Dataset Shift

siep g3

train

HHBEBE —
classifier

original training set
(labeled)

[ Test set A \

Test set A is more similar to training set

Test set B

PLET
AeEd
TR
- GF

Test set C

3 =
BepE
aert
1

s
" &
(@51 t

| €aait

=—
.
.g



Accuracy Prediction Based on Dataset Shift
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Correlation Study

1. We collect many test sets from different distributions

2. For each test set, we obtain
a) its distance with training set
(Frechet distance)
b) classification accuracy

3. Measure the accuracy relationship between the two statistics



Correlation Study: How Can We Have Datasets?

* Using image transformations
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Correlation Study: How Can We Have Datasets?

* Using image transformations
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Correlation Study: How To Obtain Accuracy?
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Labels of the synthetic sets are inherited from the original set
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classification acc. (%)

Correlation Study on Three Setups

Every point is a dataset
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we consistently observe a strong negative linear relationship (Pearson Correlation r <0.88)
between the accuracy of two tasks
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Correlation Study on Three Setups
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This indicates that the classifier tends to gain a high accuracy on the sample set which has a
low distribution shift with training set.



Accuracy Estimation on Unseen Test Sets

* Linear regression
* Network regression



Accuracy Estimation on Unseen Test Sets

* Linear regression
Fréchet distance (FD) between the test set and the original training set

Alinear — Alz’nea’r‘(f) = W1 flinea'r + Wo

Fréchet distance
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Accuracy Estimation on Unseen Test Sets

* Network regression

FD + mean + covariance (sum) for representing each dataset

We calculate o by taking a weighted summation of each row of X' to produce
a single vector
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* We use neural network regression

— fneural — [flinear; 122 U]

Uneural — Aneural(.fneural)



Accuracy Estimation on Unseen Test Sets

* Linear regression achieves promising estimations

Training set Seed set 1 Test sets
COCO validation set J PASCAL, ImageNet, and Caltech

COCO training set
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Accuracy Estimation on Unseen Test Sets

* Linear regression achieves promising estimations
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Accuracy Estimation on Unseen Test Sets

* Linear regression achieves promising estimations

* Network regression makes more accurate predictions
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Our Research: Unsupervised Evaluation

* Accuracy prediction based on dataset shift

e Self-supervision for unsupervised evaluation



Self-Supervision for Unsupervised Classifier Evaluation

e Multi-task network structure

rotation prediction head
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Deng, Weijian, Stephen Gould, and Liang Zheng. "What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?." ICML, 2021.



Self-Supervision for Unsupervised Classifier Evaluation

e Multi-task network structure

rotation prediction head
° 180° 270°

0° 90
A EoEn
H—» backbone

Rotation prediction is self-supervised:
we can obtain its rotation labels freely and
calculate its accuracy on any test set

Deng, Weijian, Stephen Gould, and Liang Zheng. "What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?." ICML, 2021.



Motivation

Test set 1 Test set 2 Test set 3

rotatlon predlctlon head
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Correlation Study

1. We collect many test sets from different distributions
2. Test our multi-task network on them and obtain
a) sematic classification accuracy

b) rotation prediction accuracy

3. Measure the accuracy relationship between two types of tasks



Correlation Study on Three Setups

Every point is a dataset
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we consistently observe a strong linear relationship (Pearson Correlation r > 0.88)
between the accuracy of two tasks
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Correlation Study on Three Setups

Every point is a dataset
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If the multi-task network is good at predicting rotations, it is most likely to
achieve good object recognition accuracy under the same environment, and vice versa



Our Solution for Accuracy Estimation: Linear Regression

* Method:

Predict classifier performance from rotation prediction accuracy

We thus can use linear regression to predict accuracy

acls _ ,wlarot + wp,

where wq,wy € R are linear regression parameters



Accuracy Estimation on Unseen Test Sets

* Linear regression achieves promising estimations
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Conclusions and Insights

* We study a very interesting problem:

Evaluating model performance without ground truths

* We introduce a very simple method:

Dataset-level regression (Linear regression and Neural network regression)

* Potential Applications:

Other tasks: object retrieval, detection, segmentation, etc.



Thank you!

The code is available at .;

https://weijiandeng.xyz e de o fEE
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