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Abstract

This work investigates dataset vectorization for two
dataset-level tasks: assessing training set suitability and
test set difficulty. The former measures how suitable a train-
ing set is for a target domain, while the latter studies how
challenging a test set is for a learned model. Central to
the two tasks is measuring the underlying relationship be-
tween datasets. This needs a desirable dataset vectoriza-
tion scheme, which should preserve as much discriminative
dataset information as possible so that the distance between
the resulting dataset vectors can reflect dataset-to-dataset
similarity. To this end, we propose a bag-of-prototypes
(BoP) dataset representation that extends the image-level
bag consisting of patch descriptors to dataset-level bag con-
sisting of semantic prototypes. Specifically, we develop a
codebook consisting of K prototypes clustered from a ref-
erence dataset. Given a dataset to be encoded, we quan-
tize each of its image features to a certain prototype in the
codebook and obtain a K-dimensional histogram. Without
assuming access to dataset labels, the BoP representation
provides rich characterization of the dataset semantic dis-
tribution. Furthermore, BoP representations cooperate well
with Jensen-Shannon divergence for measuring dataset-to-
dataset similarity. Although very simple, BoP consistently
shows its advantage over existing representations on a se-
ries of benchmarks for two dataset-level tasks.

1. Introduction

Datasets are fundamental in machine learning research,
forming the basis of model training and testing [18, 51, 52,
61]. While large-scale datasets bring opportunities in al-
gorithm design, there lack proper tools to analyze and make
the best use of them [6,51,56]. Therefore, as opposed to tra-
ditional algorithm-centric research where improving mod-
els is of primary interest, the community has seen a grow-
ing interest in understanding and analyzing the data used for
developing models [51, 56]. Recent examples of such goal
include data synthesis [29], data sculpting [25,51], and data
valuation [6,32,56]. These tasks typically focus on individ-
ual sample of a dataset. In this work, we aim to understand

nature of datasets from a dataset-level perspective.

This work considers two dataset-level tasks: suitability
in training and difficulty in testing. First, training set suit-
ability denotes whether a training set is suitable for training
models for a target dataset. In real-world applications, we
are often provided with multiple training sets from various
data distributions (e.g., universities and hospitals). Due to
distribution shift, their trained models have different perfor-
mance on the target dataset. Then, it is of high practical
value to select the most suitable training set for the target
dataset. Second, test set difficulty means how challenging a
test set is for a learned model. In practice, test sets are usu-
ally unlabeled and often come from different distributions
than that of the training set. Measuring the test set difficulty
for a learned model helps us understand the model reliabil-
ity, thereby ensuring safe model deployment.

The core of the two dataset-level tasks is to measure the
relationship between datasets. For example, a training set
is more suitable for learning a model if it is more similar
to the target dataset. To this end, we propose a vectoriza-
tion scheme to represent a dataset. Then, the relationship
between a pair of datasets can be simply reflected by the
distance between their representations. Yet, it is challeng-
ing to encode a dataset as a representative vector, because
(i) a dataset has a different cardinality (number of images)
and (ii) each image has its own semantic content (e.g., cate-
gory). It is thus critical to find an effective way to aggregate
all image features to uncover dataset semantic distributions.

In the literature, some researchers use the first few mo-
ments of distributions such as feature mean and co-variance
to represent datasets [20, 62, 74, 75, 82]. While being com-
putational friendly, these methods do not offer sufficiently
strong descriptive ability of a dataset, such as class distri-
butions, and thus have limited effectiveness in assessing at-
tributes related to semantics. There are also some methods
learn task-specific dataset representations [1, 63]. For ex-
ample, given a dataset with labels and a task loss function,
Task2Vec [1] computes an embedding based on estimates
of the Fisher information matrix associated with a probe
network’s parameters. While these task-specific represen-
tations are able to predict task similarities, they are not suit-
able for characterizing dataset properties of interest. They
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require training a network on the specific task [1] or on mul-
tiple datasets [63], so they are not effective in assessing the
training set suitability. Additionally, they require image la-
bels for the specific task, so they cannot be used to measure
the difficulty of unlabeled test sets.

In this work, we propose a simple and effective bag-of-
prototypes (BoP) dataset representation. Its computation
starts with partitioning the image feature space into seman-
tic regions through clustering, where the region centers, or
prototypes, form a codebook. Given a new dataset, we
quantize its features to their corresponding prototypes and
compute an assignment histogram, which, after normaliza-
tion, gives the BoP representation. The dimensionality of
BoP equals the codebook size, which is usually a few hun-
dred and is considered memory-efficient. Meanwhile, the
histogram computed on the prototypes is descriptive of the
dataset semantic distribution.

Apart from being low dimensional and semantically rich,
BoP has a few other advantages. First, while recent works
in task-specific dataset representation usually require full
image annotations and additional learning procedure [1,63],
the computation of BoP does not rely on any. It is relatively
efficient and allows for unsupervised assessment of dataset
attributes. Second, BoP supports dataset-to-dataset similar-
ity measurement through Jensen-Shannon divergence. We
show in our experiment that this similarity is superior to
commonly used metrics such as Fréchet distance [27] and
maximum mean discrepancy [33] in two dataset-level tasks.

2. Related Work
Dataset representations. A common practice is to

use simple and generic statistics as dataset representations
[20, 62, 74, 75, 82]. For example, Peng et al. [62] use the
first moment to represent a dataset. Deng et al. [20] use
global feature mean and co-variance as dataset representa-
tions. Vanschoren et al. [82] find dataset cardinality (the
number of images/classes) useful to encode a dataset. These
methods have limited descriptive ability, whereas BoP is
more semantically descriptive. Moreover, it is feasible to
learn a task-specific dataset representation [1, 63, 84, 87].
For example, Ying et al. [84] learn transfer skills from pre-
vious transfer learning experiences for future target tasks.
Achille et al. [1] propose to learn a task embedding based
on the estimate of Fisher information matrix associated with
a task loss. Compared with these task-specific representa-
tions, BoP is hand-crafted, avoiding computation overheads
incurred by end-to-end learning. It is thus efficient in mea-
suring training set suitability without training any models.
Moreover, BoP require no image labels, making it more
suitable for assessing the difficulty of unlabeled test sets.

Dataset-to-dataset similarity. We briefly review three
strategies. First, some dataset similarity measures are de-
veloped in the context of domain adaptation [2, 9, 10, 85].

They typically depend on a loss function and hypothe-
sis class, and use a supremum of that function class to
quantify the similarity of datasets. (e.g., H∆H-divergence
[9], f -divergence [2], and A-distance [10]). Second,
dataset distance can be computed based on optimal trans-
port [5, 17, 79]. For example, the squared Wasserstein met-
ric Fréchet distance [27] is widely used in comparing the
distribution discrepancy of generated images with the distri-
bution of real images [39]. To better leverage the geometric
relationship between datasets, Alvarez et al. [5] use labels
to guide optimal transport towards class-coherent matches.
Third, existing dataset representations can be used to com-
pute dataset distance [33, 62, 75, 81]. For example, maxi-
mum mean discrepancy (MMD) [33] computes the distance
between mean elements of distributions on the probability
space. Peng et al. [62] eliminate dataset discrepancy by
matching datasets moments. CORAL [75] uses the second-
order statistics of datasets to measure distance. This work
is in the third category and uses JS divergence between BoP
representations to calculate dataset-to-dataset similarity.

Assessment of training dataset suitability. Recent
works have focused on understanding the importance of in-
dividual training instances in training of neural networks
[6, 32, 45, 56]. For example, Data Shapley [32] and Consis-
tency Score [45] are proposed to evaluate the value of each
data instance. Some methods identify “difficult” instances
based on the information of training dynamics [7, 76, 80].

Different from the above approaches, this work studies
the suitability of an entire training set. Given multiple train-
ing datasets from different data distributions, the focus is to
choose the most appropriate training dataset for the target
domain. Dataset-to-dataset similarity can be used for this
goal. Intuitively, if a training dataset has high similarity
with a target dataset, the model trained on it is expected
to be more performant and vice versa. In this work, we
use BoP representation coupled with simple JS divergence
to calculate dataset-to-dataset similarity and demonstrate its
effectiveness in accessing training set suitability.

Assessing test set difficulty without ground truths.
The goal of this task (also known as unsupervised accu-
racy estimation) is to predict the accuracy of a given model
on various unlabeled test sets. Existing methods usually
use a representation of the test set for accuracy prediction
[13, 19, 20, 30, 34]. Normally this representation is derived
from classifier outputs, such as image features [20], predic-
tion logits [30], average softmax scores [34]. Then, regres-
sion is used to establish the relationship between this rep-
resentation and model test accuracy under various testing
environments. Compared with existing dataset features, the
BoP representation better characterizes the semantic distri-
bution of training and test sets and thus can be effectively
used for model accuracy prediction.

2882



3. Methodology
3.1. Bag-of-Words Model Across Communities

In natural language processing (NLP) and information
retrieval, the Bag-of-Words (BoW) model [46, 47, 50, 57]
vectorizes textual data as a word histogram. Specifically,
for each word in the dictionary, its occurrences in a docu-
ment are counted, which fills in the corresponding entry of
the BoW feature. This word frequency vector is thus used
to represent a document. Numerous improvements of the
BoW feature were made in NLP, such as n-grams [47, 50]
and term frequency-inverse document frequency [68].

In the early 2000s, the BoW representation was intro-
duced to the computer vision (CV) community to encode
hundreds or thousands of local image descriptors [8, 53]
into a compact vector [73]. As there is no semantic code-
book like in NLP, a visual codebook is constructed by per-
forming clustering (e.g., k-means) on a collection of local
image features, where the resulting clustering centers are
called “visual words”. Local image descriptors are quan-
tized to their nearest cluster center so that a visual word his-
togram can be computed. This BoW histogram also have
undergone extensive improvements in later years, such as
Fisher vector [64, 65], vector of locally aggregated descrip-
tors (VLAD) [43], and the use of principal component anal-
ysis and whitening [42].

Contribution statement. This paper contributes a base-
line method in adopting the BoW idea study the two basic
properties of a dataset. To this end, we propose to represent
a dataset using its histogram over a series of prototypes. A
comparison between the usage of BoW model in NLP, CV
and our dataset-level research is shown in Table 1. Specif-
ically, the BoP representation relies on clustering for code-
book formation, has a relatively small codebook (depending
on the richness of dataset semantics), and has semantically
sensible codewords.

3.2. Bag-of-Prototypes Dataset Representation

Given a dataset D = {xi}Ni=1 where N is the number
of images and a feature extractor F(·) that maps an input
image into a d-dimensional feature f ∈ Rd, we extract a set
of image features F := {F(xi)}Ni=1. While it is possible to
directly use the dataset images (or features) as model input
under small N , it becomes prohibitively expensive when N
is large. We therefore focus on extracting useful semantic
features of F by encoding its image features into a com-
pact representation. Below we detail the necessary steps for
computing the proposed BoP representation (refer Fig. 1).

Step I: Codebook generation. Given a reference
dataset Dr = {xr

i }
Nr
i=1, we extract all of its image features

Fr := {F(xr
i )}

Nr
i=1 using a pretrained network, from which

a codebook is constructed. Specifically, we adopt standard
k-means clustering [54] to partition the feature space Rd

BoW in NLP BoW in CV BoP
Encoded
objects

Documents Images
Datasets

(a set of images)
Codewords in

codebook
Words

Cluster centers of
local descriptors

Prototypes of
image features

Clustering? No Yes Yes
Codewords
semantics

Clear Little Sensible

Codebook
size

> 103 103 − 106
∼ 102 (dataset

dependent)

Table 1. Comparing BoP with BoW model in natural language
processing (NLP) and computer vision (CV). The objective of
BoW in NLP and CV is encoding texts and images respectively,
while BoP is proposed to represent datasets.

into K clusters. Each of the K cluster centers is called a
“prototype”, because oftentimes each center mainly repre-
sents a certain semantic content. See Fig. 1 right for exem-
plar image of each prototype. The prototypes, or centers,
constitute the codebook, denoted as C = {ci}Ki=1, where ci
is the i-th prototype. Note that, the order of the prototypes
is fixed in the codebook.

Step II: Histogram computation. For a dataset to be
encoded De = {xe

i}
Ne
i=1 where Ne is the number of im-

ages, we project it onto codebook C of size K to compute
its BoP representation. Specifically, after extracting image
features Fe := {F(xe

i )}
Ne
i=1 from De, for each image fea-

ture, we compute its distance with all the K prototypes in
the codebook, yielding K distances d1, ..., dk, where di is
the distance between an image feature and the i-th proto-
type. An image feature is quantized to prototype ci if di is
the lowest among d1, ..., dk. Following the quantization, we
generate a K-dimensional one-hot encoding where the i-th
entry is 1 and all the others are 0. Having computed the one-
hot vectors for all the image features, we sum them which is
then normalized by Ne, the number of images in De. This
gives the histogram representation he, or BoP representa-
tion, for De where the i-th entry indicates the density of
features in De belonging to prototype ci.

3.3. Measuring Dataset-to-Dataset Similarity

Similar to image / document retrieval where BoW vec-
tors of instances are used for similarity comparison [14,
26, 59, 66, 73], this work uses the BoP representation to
calculate dataset-to-dataset similarity. Specifically, given
BoP representations hx and hy of two datasets Dx and
Dy , we simply define their similarity Sx,y using Jensen-
Shannon divergence (JS divergence), which is designed for
histogram-based similarity measurement [16, 55].

Task-oriented similarity measure. We can build a uni-
versal codebook on a large-scale dataset following BoW
model [14, 86]. By doing so, the resulting BoP represen-
tations are generic. We can also build a task-oriented code-
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Figure 1. Workflow of BoP representation computation using CIFAR-10 [49] and one CIFAR-10 out-of-distribution (OOD) test set as an
example. Top: We group image features of the reference dataset CIFAR-10 into 10 clusters, and the centers are called prototypes. The
prototypes constitute the codebook of size 10. Bottom left: To encode the OOD test set, we project it onto the codebook by quantizing
each image feature to its corresponding prototype. Lastly, we compute the histogram, i.e., BoP representation, of CIFAR-10 OOD test set.
Bottom right: We regard dataset-to-dataset similarity as the Jensen-Shannon divergence between BoP histograms of CIFAR-10 OOD test
set and reference dataset. With such similarity, we can measure the test set difficulty for the model trained on reference dataset.

book on a reference dataset from a specific task to consider
more task-oriented information. The latter is more suitable
for the two dataset-level tasks considered in this work. For
the task of training set suitability assessment, we use the
target dataset as the reference for codebook generation to
fully consider its the semantic information. As a result, the
JS divergence between BoP representations of the training
set and the target dataset can well capture how a training
set is similar to the target set. Similarly, for the task of test
set difficulty assessment, we build codebook on the training
set. This practice can effectively measure how an unlabeled
test is similar to a given training set.

3.4. Discussion

Working mechanism of BoP. Codebook generation
of BoP can be viewed as Centroidal Voronoi Tessella-
tions [24]. Specifically, the prototypes (cluster centers) of
codebook tessellate the feature space into Voronoi cells.
Then, histogram computation approximates a probability
distribution function in the same way as the nonparamet-
ric histogram [12, 28, 67]. That is, the BoP representation
reflects the distribution of a dataset in the feature space.

As shown in Fig. 1, the prototypes of reference dataset
tessellate feature space into Voronoi cells. Based on this,
we quantify the histogram of the reference dataset to repre-
sent its distribution. Given a new dataset, we conduct the
same histogram calculation procedure and correspondingly
capture its dataset distribution with the histogram. Then, we
measure discrepancy of the two datasets by calculating JS

divergence between their histograms. Compared with com-
mon measures of dataset distance (e.g., FD [27], KID [11]
and MMD [33]) that only reflect global structure (e.g., first
few moments) of dataset distributions, BoP, collaborated
with JS divergence, considers more local structures.

Training set suitability vs. transferability estimation.
Two tasks relate but differ significantly: 1) Given an un-
labeled target dataset and a pool of training datasets, the
former aims to select the most suitable training set for the
target. The latter assumes a labeled target dataset and a pool
of models pretrained on a source dataset, with the goal of
selecting the most suitable source model for the target with-
out fine-tuning them all [3,4,60]; 2) Datasets in training set
suitability are used for the same classification problem. In
contrast, in transferability estimation, the problem in the tar-
get dataset (e.g., CIFAR-10 classification) is different from
that of the source dataset (e.g. ImageNet classification).

Analysis of the number of prototypes in a codebook.
The codebook size is a critical factor influencing the useful-
ness of the BoP. A small codebook means a coarser parti-
tion of feature space, where similar features will likely be
in the same cluster, but dissimilar features may also be in
the same cluster. Moreover, a large codebook provides a
finer description of the space, where dissimilar features are
quantized to different prototypes and more semantics are
explored. According to our experiment results in Fig. 2
and Fig. 5, we find, reassuringly, BoP is robust against the
codebook size: prototype number can deviate within a wide
range around the true classes number (e.g., 345 for Domain-
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Net [62]) without significantly affecting performance.
Application scope and future directions. BoP is pro-

posed to study the two dataset-level tasks, and the datasets
considered in each task share the same label space. We
may encounter some situations where we need to com-
pare datasets with different label spaces (e.g., pre-training
datasets selection [1]). In this case, one potential way is to
build a universal codebook on a large-scale and representa-
tive dataset similar to BoW models [14, 86]. By doing so,
the resulting BoP representations can encode diverse and
sufficient semantics for comparing datasets across various
label spaces. We view our BoP as a starting point to en-
code datasets. It would be interesting to study other dataset
vectorization schemes and dataset-level tasks.

4. Comparing Training Suitability of Datasets
This task studies dataset valuation where multiple train-

ing sets are provided by different data contributors. The
goal is to select the most suitable training set (ideally with-
out training) whose trained model performs the best on a
target test set. In this section, we first validate that BoP,
collaborated with JS divergence (BoP + JS), is predictive of
dataset suitability for the target test set. Then, we show that
BoP is robust when using a wide range of codebook sizes
and different networks.

4.1. Experimental Settings

Correlation study under DomainNet setup. We use
domain generalization benchmark DomainNet [62], which
consists of 6 domains: Painting, Real, Infograph, Quick-
draw, Sketch and ClipArt, where the tasks are 345-way ob-
ject classification. Each domain has its training and test
splits. We conduct the correlation study in an leave-one-
out manner, leading to 6 groups of correlation studies, with
each group using the test split of one domain as the target
test set. Additionally, we apply image transformations to
the training split of six original domains. Specifically, we
employ ‘Cartoon’ [48], ‘Zoom Blur’ and ‘JPEG Compres-
sion’ [36] to convert domains’ style to be one specific type.
We also use ‘AugMix’ [38] and ‘AutoAugment’ [15], which
transform images with various operations to generate do-
mains with mixed styles. This process synthesizes 30 new
datasets, so we have 36 training sets in total.

We follow the training scheme provided by TLlib [44] to
train ResNet-101 model [35], whose weights are pretrained
on ImageNet [18], yielding 36 models. Moreover, penulti-
mate outputs of pretrained ResNet-101 is used as image fea-
ture. On the test set, we generate a codebook of size 1000.
Then, for each training set, we compute its BoP histogram,
BoP + JS from the test set, and the accuracy of its trained
model on the test set. After this, we calculate correlation
strength between BoP + JS and model accuracy to evaluate
whether BoP is indicative of datasets training suitability.

Method ResNet-34 ResNet-101

r ρ τw r ρ τw

FD [27] -0.860 -0.926 -0.828 -0.903 -0.902 -0.802
MMD [33] -0.817 -0.801 -0.691 -0.821 -0.817 -0.704
KID [11] -0.773 -0.904 -0.804 -0.876 -0.896 -0.800

BoP + JS -0.960 -0.927 -0.840 -0.961 -0.929 -0.840

Table 2. Compare averaged Pearson’s correlation (r), Spearman’s
correlation (ρ) and weighted Kendall’s correlation (τw) of Fréchet
distance (FD), maximum mean discrepancy (MMD) , kernel in-
ception distance (KID) and BoP + JS (codebook size 1000) on
six test sets in DomainNet. We report two groups of results using
ResNet-34 (Left) and ResNet-101 (Right). We show BoP + JS is
more effective in assessing training set suitability than others.

Evaluation metric. We use Pearson’s correlation r and
Spearman’s rank correlation ρ to show linearity and mono-
tonicity between BoP-based dataset distance and model ac-
curacy, respectively. Both metrics range in [−1, 1]. If |r|
or |ρ| is close to 1, the linearity or monotonicity is strong,
and vice versa. In addition to these two metrics, we also
use weighted variant of Kendall’s correlation (τw) [83]. It
is shown to be useful when selecting the best ranked item is
of interest [71], while a major application of BoP + JS is to
select the training dataset leading to the best performance
on a test set. This metric has the same range where a num-
ber closer to −1 or 1 indicates stronger negative or positive
correlation, respectively, and 0 means no correlation.

4.2. Evaluation

Strong correlation: A training set is more suitable for
a given test set if it has small BoP + JS. Fig. 2 shows corre-
lation study on ClipArt, Painting, Real and Sketch. We no-
tice that there are strong Pearson’s correlations (|r| > 0.95),
Spearman’s rank correlations (|ρ| > 0.93) and relatively
high weighted Kendall’s correlations (|τw| > 0.84) on four
test sets. This suggests that BoP + JS is stable and use-
ful across test sets. Table 2 compares average correlation
strength of BoP + JS with Fréchet distance (FD) [27], max-
imum mean discrepancy (MMD) [33] and kernel inception
distance (KID) [11]. They use that same image features as
BoP. According to their formulae, mean and covariance of
these features are used for distance computation. We see
that BoP + JS has the highest average correlation scores on
six test sets (|r| = 0.961, |ρ| = 0.929 and |τw| = 0.840).
On average, BoP + JS is superior in depicting training sets
suitability for a test set without any training procedure.

Impact of codebook size is shown in the Fig. 3. We con-
struct codebooks with different size within approximately
one order of magnitude around 345. We find that the three
correlation scores increase and then become stable when
codebook size becomes larger. This indicates that the per-
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denotes a model trained on a training set of DomainNet. We mark training domains (e.g., ClipArt) by different shapes and transformation
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Figure 3. Impact of codebook size on correlation strength for
ResNet-101 on four test domains: ClipArt, Painting, Real and
Sketch. For example, on Real domain, correlation scores |ρ|, |r|
and |τw| are relatively low under a small size and remain stably
high when the size is greater than 400.

formance BoP + JS is overall consistent.
Correlation study with a different model architec-

ture. We additionally validate the robustness of BoP for
ResNet-34 with codebook size 1000. As shown in Table 2,
we compare the average correlation scores of BoP + JS, FD,
MMD and KID. We see that BoP + JS has consistent per-
formance on two models and remains preferable to charac-
terize training suitability.

5. Assessing Test Set Difficulty without Labels
In the task of test set difficulty assessment, we are pro-

vided with a labeled training set and a set of unlabeled
datasets for testing. Given a classifier trained on the train-
ing set, the goal is to estimate the model accuracy on these

test sets without any data annotations. In this section, we
first show dataset distance measured by BoP + JS exhibits
strong negative correlation with classifier accuracy. We then
demonstrate an accuracy predictor based on the BoP repre-
sentation gives accurate performance estimates compared to
state-of-the-art methods.

5.1. Experimental Settings

Correlation study under CIFAR-10 setup. We con-
duct a correlation study by comparing BoP + JS with clas-
sifier accuracy. Following the same setup in [21], we use
a series of datasets sharing the same label space (but usu-
ally with distribution shift) with CIFAR-10 [49]. Specif-
ically, we train ResNet-44 classifier [35] on the training
set of CIFAR-10, which consists of 50, 000 images from
10 classes. Here, we use the CIFAR-10-C benchmark [37]
for correlation study, which contains different types of cor-
ruptions with 5 levels of severity including per-pixel noise,
blurring, synthetic weather effects, and digital transforms.
Then, for each dataset, we compute its BoP vector, its BoP
+ JS from CIFAR-10 training set and the classifier accu-
racy. In addition to ResNet-44, we also study the RepVGG-
A1 [22], VGG-16-BN [72] and MobileNet-V2 [70] .

Predicting classification accuracy under CIFAR-10
setup. We train a regressor that takes as input the BoP
representation and outputs classification accuracy. The re-
gressor is a neural network with 3 fully connected layers
and trained on CIFAR-10-C (regression training set). We
evaluate accuracy prediction on CIFAR-10.1 [69], CIFAR-
10.2 [69] and CIFAR-10.2-C̄ [58]. The former two are real-
world datasets with natural shift, while the latter one is man-
ually corrupted by the same synthetic shift as [58]. Specif-
ically, we add 10 types of unseen and unique corruptions
such as warps, blurs, color distortions and noise additions,
with 5 severity levels to CIFAR-10.2. Note that, these cor-
ruptions have no overlap with those in CIFAR-10-C [58].
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Figure 4. Correlation between train-test distance measured by BoP + JS and model accuracy. Top: Correlation study under CIFAR-
10 setup using ResNet-44, RepVGG-A1, VGG-16-BN and MobileNet-V2. Each data point denotes a dataset from CIFAR-10-C. Bottom:
Correlation study under ImageNet setup using EfficientNet-B1, DenseNet-121, Inception-V4 and ViT-Base-16. ImageNet-C datasets are
used as test sets. The straight lines are fit with robust linear regression [41]. Under both setups, we observe the strong Spearman’s rank
correlation (|ρ| > 0.98) between BoP + JS and model accuracy.

For the above, we extract image features (output of
penultimate layer of ResNet-44) from CIFAR-10 training
set. We construct a codebook by dividing the features into
80 clusters with k-means.

Correlation study under ImageNet setup. We use
DenseNet-121 [40] classifier trained on ImageNet training
set. We employ a series of datasets from the ImageNet-C
benchmark [36] where the classifier is tested. ImageNet-
C uses the same types of corruptions as CIFAR-10-C. We
construct a codebook of size 1000 on the ImageNet training
set from which images features are extracted by the penul-
timate layer of DenseNet-121. We project each dataset in
ImageNet-C onto the codebook and obtain their BoP rep-
resentations. When exhibiting linear correlations, we cal-
culate BoP + JS between each ImageNet-C dataset and the
training set, and compute classification accuracy. We also
use EfficientNet-B1 [78], Inception-V4 [77] and ViT-Base-
16 [23] to repeat above procedure for correlation study.

Evaluation metric. Same as Section 4.1, we use Pear-
son’s correlation r and Spearman’s rank correlation ρ to
show linearity and monotonicity between BoP based dataset
distance and model accuracy, respectively. To evaluate
the effectiveness of accuracy estimation, we use root mean
squared error (RMSE) by calculating the difference be-
tween estimated accuracy and ground truth before taking
the mean across all the test sets. A larger RMSE means a
less accurate prediction, and vice versa.

Compared methods. We compare our system with four
existing ones. 1) Prediction score: it estimates model accu-
racy using the maximum of Softmax output (i.e., confidence

score). An image with a confidence score greater than a
predefined threshold τ ∈ [0, 1] is considered correctly pre-
dicted. We select two thresholds (τ = 0.8 and 0.9). 2) Dif-
ference of confidence (DoC) [34] trains a linear regressor
mapping average confidence to classifier accuracy; 3) Aver-
age thresholded confidence with maximum confidence score
function (ATC-MC) [31] calculates a threshold on CIFAR-
10 validation set and regards an image with a confidence
score higher than the threshold as correctly classified; 4)
Network regression (µ + σ+FD) [21] trains a neural net-
work that takes as input the feature mean, covariance and
Fréchet distance between a set of interest and training set
and outputs model accuracy. All methods, if applicable, are
compared under the same conditions as our system, e.g.,
classification training set and regression training set.

5.2. Evaluation

Strong correlation: A test set is difficult (low accu-
racy) if it is dissimilar to the training set using BoP + JS.
Fig. 4 presents the correlation study of two setups and var-
ious classifiers. We observe a very high Spearman’s rank
correlation (|ρ| > 0.99) in all the scenarios. It indicates
that classification accuracy is highly correlated with JS di-
vergence between BoPs of training and test sets. That is,
test accuracy drops proportionally to the distance between
the given training set and a test set. The results demonstrate
BoP + JS between training and test sets is an effective indi-
cator of classification accuracy. More studies are presented
in the supplementary materials.

Effectiveness of the BoP representation in predict-
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Table 3. Method comparison in predicting classifier accuracy under CIFAR-10 setup. We compare four methods: predicted score-based
method with hard threshold τ , neural network regression based on feature statistics (µ+σ+FD) [20], average thresholded confidence with
maximum confidence score function (ATC-MC) [30] and difference of confidences (DoC) [34]. We use CIFAR-10.1 and CIFAR-10.2 (both
real-world) and CIFAR-10.2-C̄ (manually corrupted) as unseen test sets for accuracy prediction. We use RMSE (%) to indicate precision
of estimates. In each column, we compare our method with the best of the competing ones. We report results by average of five runs.

Method CIFAR-10.1 CIFAR-10.2
CIFAR-10.2-C̄ (50)

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Overall

Prediction score (τ = 0.8) 4.899 4.800 10.127 12.869 16.809 21.427 24.371 17.910
Prediction score (τ = 0.9) 0.297 0.550 3.638 5.078 8.048 11.804 14.108 9.404

ATC-MC [30] 2.650 2.672 3.080 4.306 7.108 11.015 13.040 8.601

DoC [34] 0.490 0.263 2.247 2.916 5.117 9.012 6.637 5.744

µ+ σ + FD [21] 0.455 0.561 5.875 5.823 4.724 4.908 6.486 5.602

BoP (K = 80) 0.218 0.122 2.458 2.818 3.730 5.836 6.451 4.551
BoP (K = 100) 0.186 0.124 2.849 2.808 3.548 4.025 4.777 3.663
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Figure 5. Impact of codebook size on correlation strength on CIFAR-10-C. Correlation scores |ρ| and |r| are relatively low under a
small size and become stably high when the size is greater than 20 for all four model architectures.

ing classification accuracy on variou unseen test sets.
After performing correlation study, we train a neural net-
work regressor on CIFAR-10-C and test it on a series of
test sets. Results are summarized in Table 3. We have the
following observations. First and foremost, BoP represen-
tation achieves the best accuracy prediction performance,
evidenced by the lowest RMSE across all the four test sce-
narios. For example, on the test sets of CIFAR-10.2-C̄,
the RMSE of our method is 4.551, which is 1.051 lower
than the second best method [21]. This clearly validates the
effectiveness of the BoP representation. Second, we ob-
serve that the “Prediction score” method is unstable. While
it has good results under τ = 0.9 on CIFAR-10.1 and
CIFAR-10.2 datasets, it is generally inferior to the compet-
ing methods in other test scenarios. Our observation is simi-
lar to [21], suggesting that a more robust threshold selection
method is needed for this method. Third, although BoP has
slightly higher RMSE than DoC on Severity 1 of CIFAR-
10.2-C̄ (2.458 v.s., 2.247), we stress that BoP is overall
more stable and effective on real world datasets and other
severity levels of synthetic datasets.

Impact of codebook size is summarized in Fig. 5 under
CIFAR-10 setup. We conduct the study using different sizes
on four classifiers. We observe correlation scores first in-

crease and then become stable when codebook size is larger
than 20. These results are considered validation and help us
use competitive and stable codebook sizes in Table 3.

6. Conclusion
This work introduces a bag-of-prototypes (BoP) dataset

representation to vectorize visual datasets. It first computes
a codebook composed of clustering prototypes and then a
prototype histogram for a dataset. The BoP vector consid-
ers the underlying local semantic distribution of a dataset
and is thus more discriminative than global dataset statis-
tics. Specifically, when used in conjunction with JS diver-
gence, the proposed descriptor better captures the underly-
ing relationship across datasets. This advantage is validated
by its promising results in two dataset-level tasks: assess-
ing training set suitability and test set difficulty. This work
establishes the baseline usage of the BoP scheme, and more
investigations and applications will be made in future work.
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