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Table 3. Method comparison in predicting classifier accuracy under CIFAR-10 setup. We compare four methods: predicted score-based
method with hard threshold ⌧ , neural network regression based on feature statistics (µ+�+FD) [20], average thresholded confidence with
maximum confidence score function (ATC-MC) [30] and difference of confidences (DoC) [34]. We use CIFAR-10.1 and CIFAR-10.2 (both
real-world) and CIFAR-10.2-C̄ (manually corrupted) as unseen test sets for accuracy prediction. We use RMSE (%) to indicate precision
of estimates. In each column, we compare our method with the best of the competing ones. We report results by average of five runs.

Method CIFAR-10.1 CIFAR-10.2 CIFAR-10.2-C̄ (50)
Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Overall

Prediction score (⌧ = 0.8) 4.899 4.800 10.127 12.869 16.809 21.427 24.371 17.910
Prediction score (⌧ = 0.9) 0.297 0.550 3.638 5.078 8.048 11.804 14.108 9.404

ATC-MC [30] 2.650 2.672 3.080 4.306 7.108 11.015 13.040 8.601

DoC [34] 0.490 0.263 2.247 2.916 5.117 9.012 6.637 5.744

µ+ � + FD [21] 0.455 0.561 5.875 5.823 4.724 4.908 6.486 5.602

BoP (K = 80) 0.218 0.122 2.458 2.818 3.730 5.836 6.451 4.551
BoP (K = 100) 0.186 0.124 2.849 2.808 3.548 4.025 4.777 3.663
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Figure 5. Impact of codebook size on correlation strength on CIFAR-10-C. Correlation scores |⇢| and |r| are relatively low under a
small size and become stably high when the size is greater than 20 for all four model architectures.

ing classification accuracy on variou unseen test sets.

After performing correlation study, we train a neural net-
work regressor on CIFAR-10-C and test it on a series of
test sets. Results are summarized in Table 3. We have the
following observations. First and foremost, BoP represen-
tation achieves the best accuracy prediction performance,
evidenced by the lowest RMSE across all the four test sce-
narios. For example, on the test sets of CIFAR-10.2-C̄,
the RMSE of our method is 4.551, which is 1.051 lower
than the second best method [21]. This clearly validates the
effectiveness of the BoP representation. Second, we ob-
serve that the “Prediction score” method is unstable. While
it has good results under ⌧ = 0.9 on CIFAR-10.1 and
CIFAR-10.2 datasets, it is generally inferior to the compet-
ing methods in other test scenarios. Our observation is simi-
lar to [21], suggesting that a more robust threshold selection
method is needed for this method. Third, although BoP has
slightly higher RMSE than DoC on Severity 1 of CIFAR-
10.2-C̄ (2.458 v.s., 2.247), we stress that BoP is overall
more stable and effective on real world datasets and other
severity levels of synthetic datasets.

Impact of codebook size is summarized in Fig. 5 under
CIFAR-10 setup. We conduct the study using different sizes
on four classifiers. We observe correlation scores first in-

crease and then become stable when codebook size is larger
than 20. These results are considered validation and help us
use competitive and stable codebook sizes in Table 3.

6. Conclusion

This work introduces a bag-of-prototypes (BoP) dataset
representation to vectorize visual datasets. It first computes
a codebook composed of clustering prototypes and then a
prototype histogram for a dataset. The BoP vector consid-
ers the underlying local semantic distribution of a dataset
and is thus more discriminative than global dataset statis-
tics. Specifically, when used in conjunction with JS diver-
gence, the proposed descriptor better captures the underly-
ing relationship across datasets. This advantage is validated
by its promising results in two dataset-level tasks: assess-
ing training set suitability and test set difficulty. This work
establishes the baseline usage of the BoP scheme, and more
investigations and applications will be made in future work.
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Experiment: Test set difficulty

Ø Impacts of codebook size:

SCAN ME
FOR CODES

Two Dataset-Level Applications:
Ø Training set suitability: Given a target test set and multiple 

training sets from different distributions, the goal is to select
(ideally without training) the most suitable training set.

Ø Test set difficulty: Given a trained model, the objective is to 
estimate its accuracy on various test datasets without labels.
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Ø Image representation v.s. dataset representation:
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Ø Step III: measure similarity

Ø Step I: codebook generation

Ø Step II: histogram computation
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1) BoP + JS well measures dataset-dataset similarity.
It consistently exhibit strong correlations with
classification accuracy on different test domains.

2) BoP is stable and effective using various codebook
sizes. The correlation strength firstly increases and
become stable when codebook ≥ 400.
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Ø Correlation study:

• BoP + JS exhibits strong correlations for different 
models under CIFAR-10 and ImageNet setups.

• BoP is superior in predicting accuracy than others.

• BoP is stably effective using various codebook sizes. 

Ø Effectiveness of predicting accuracy (RSME):

Ac
cu

ra
cy

 (%
)

JS divergence

JS : 0.028

Acc: 67.65%

https://github.com/Klaus-Tu/Bag-of-Prototypes

