THE HONG KONG POLYTECHNIC UNIVERSITY Adaptive Calibrator Ensemble: Navigating Test Set Difficulty 香港理工大學 in Out-of-Distribution Scenarios

Australian National University

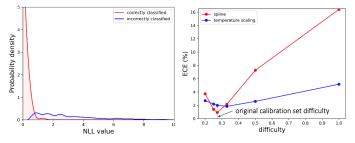
Yuli Zou¹ Weijian Deng² Liang Zheng²

ICCV23 PARIS

¹Hong Kong Polytechnic University ²Australian National University

Out-of-distribution (OOD) Calibration

Distribution Shift: test samples are from a different distribution than the calibration set


Calibration Set

OOD Test Sets

Post-hoc calibration methods fall short under distribution shifts

Tentative Explanation: Calibration Set Difficulty

Difficulty: the ratio of the number of incorrectly classified samples to that of correctly classified samples

Observations: an individual sample matters in classification loss; calibration objective depends on dataset difficulty

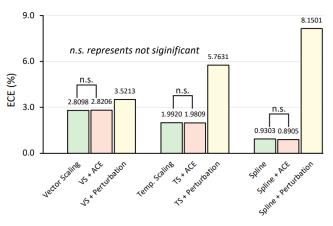
Why OOD calibration fails?

The difficulty levels are different between calibration and OOD test sets, leading to distinct optimal calibration functions

Adaptive Calibrator Ensemble (ACE)

Step1: Seeking two calibration sets (D_o, D_h) with extreme difficulty levels: an ID difficulty level (d_o) and a high difficulty level (d_h) ;

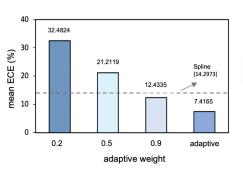
Step2: Training two calibrators \mathbf{f}_o and \mathbf{f}_h on D_o and D_h , respectively. Then the logits z_o and z_h are obtained;


Step3: An adaptive weighting average scheme to fuse the output of calibrators trained on the two extreme calibration sets:

 $z_{\rm cal} = \alpha z_o + (1 - \alpha) z_h$

We use average confidence score to indicate the OOD degree of test set. Thus, we compute the weight α as:

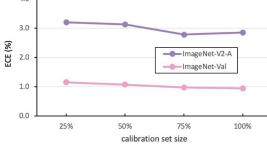
 $\alpha = \frac{\operatorname{avgConf}(D_{\text{test}})}{\operatorname{avgConf}(D_o)}$


Results on In-Distribution Test Set

ACE does not compromise in-distribution calibration performance

ļ	Results on Out-of-Distribution Test Sets						
y ¦	Methods	ImgNet-V2-A	ImgNet-V2-B	ImgNet-V2-C	ImgNet-S	ImgNet-R	ImgNet-Adv
i	uncalibrated	9.5016	6.2311	4.3117	24.6332	17.8621	50.8544
- i	Vector Scaling	6.8068	4.2184	2.9258	20.3726	14.5037	44.7593
	+ ACE	5.6291	3.7742	3.1141	15.8747	10.6343	40.5773
		±0.0397 🔺	±0.0237 🔺	±0.0150 V	±0.0252 🔺	±0.0356 🔺	±0.0491 🔺
of	Temp. Scaling	4.4413	2.7309	1.6831	15.7879	10.4797	42.6302
i	+ ACE	3.5615	2.5692	1.7021	10.3915	6.7458	38.0651
		±0.0028 🔺	±0.0013 🔺	±0.0001 V	±0.0092 🔺	±0.0083 🔺	±0.0114 🔺
i	Spline	4.5321	1.8034	1.3357	19.6392	13.1116	45.3623
:	+ ACE	2.8201	2.0235	1.0550	6.9264	6.8533	31.0926
	+ ACE	±0.0283 🔺	±0.0154 V	±0.0092 🔺	±0.0864 🔺	±0.0011 🔺	±0.0422

ACE improves calibration methods on out-of- distribution datasets



The adaptive weight α achieves **lower**

meanECE over various OOD test sets

and ID test set than fixed value

Component Analysis

ACE method is **stable** when simultaneously reduce the size of D_o and D_h by a certain percentage

Code is available at https://github.com/insysgroup/Adaptive-Calibrators-Ensemble.git