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Abstract

Model calibration usually requires optimizing some pa-
rameters (e.g., temperature) w.r.t an objective function like
negative log-likelihood. This work uncovers a significant
but overlooked aspect that the objective function is influ-
enced by calibration set difficulty: the ratio of misclassified
to correctly classified samples'. If a test set has a dras-
tically different difficulty level from the calibration set, a
phenomenon out-of-distribution (OOD) data often exhibit:
the optimal calibration parameters of the two datasets would
be different, rendering an optimal calibrator on the calibra-
tion set suboptimal on the OOD test set and thus degraded
calibration performance. With this knowledge, we propose
a simple and effective method named adaptive calibrator
ensemble (ACE) to calibrate OOD datasets whose difficulty
is usually higher than the calibration set. Specifically, two
calibration functions are trained, one for in-distribution
data (low difficulty), and the other for severely OOD data
(high difficulty). To achieve desirable calibration on a new
0O0D dataset, ACE uses an adaptive weighting method that
strikes a balance between the two extreme functions. When
plugged in, ACE generally improves the performance of a
few state-of-the-art calibration schemes on a series of OOD
benchmarks. Importantly, such improvement does not come
at the cost of the in-distribution calibration performance.
Project Website: https://github.com/insysgroup/Adaptive-
Calibrators-Ensemble.git.

1. Introduction

Model calibration aims to connect the neural network out-
put with uncertainty. A common practice is to find optimal
parameters against certain objective functions on a held-out
calibration set, to obtain an optimized calibrator. In this
paper, we focus on post-hoc calibration methods, which

IDataset difficulty (w.rz a classifier) shares the same meaning of classi-
fier accuracy on this dataset. We use “difficulty” to indicate the property of
a dataset (i.e., its OOD degree to the classifier), instead of using “accuracy”
which describes the performance of the classifier on a dataset.

require training a calibration mapping function to rescale
the confidence scores of a trained neural network to make
it calibrated [9, 10, 18]. A popular technique is Temper-
ature Scaling [9], which optimizes model temperature by
minimizing the negative log-likelihood (NLL) loss.

Post-hoc calibration methods generally work well when
calibrating in-distribution test sets. However, oftentimes
their calibration performance drops significantly when being
tested on an out-of-distribution (OOD) test set [24]. For
example, temperature scaling has shown to be ineffective
under distribution shift in some scenarios [24]. This problem
happens because the test environment (OOD) is different
from the training environment due to factors like sample bias
and non-stationarity. This paper thus aims to improve post-
hoc calibration methods by producing reliable and predictive
uncertainty under distribution shifts.

In the community, there exist a few works studying the
OOD calibration problem [28, 31, 36]. They typically aim to
make amendments to the calibration set to let it approximate
the OOD data in certain aspects [28, 31]. Nevertheless,
these techniques are typically not adaptive to the test dataset,
that is, the calibration set transformation process cannot
automatically adjust to the test set. In our experiment, we
observe that they improve calibration on some OOD datasets
but significantly lead to decreased in-distribution calibration
performance. In this regard, while TransCal [36] can perform
domain adaptation according to the test domain, it needs to
be re-trained for every new test set.

In this paper, our contributions are mainly in two aspects.
First, we provide a new perspective to understand calibra-
tion failure on out-of-distribution datasets. Specifically, we
show that the calibration objective is dependent on the
dataset difficulty. When the calibration set have the same
distribution with the test set, it has low difficulty, and thus the
calibrator learned on the calibration set would be effective
on the test set [9, 10, 18]. Yet, out-of-distribution test sets
usually exhibit a different (usually higher) difficulty level
compared with the calibration set because of the distribution
gap. Under this case, the optimal calibration functions are
different for calibration and OOD datasets. That is, a calibra-
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tor that optimized on the calibration set would not be optimal
on OOD data and thus achieve poor calibration performance.
Second, to achieve robust calibration under distribution
shifts, we propose a simple but effective method named
adaptive calibrator ensemble (ACE). It adaptively integrates
two predefined calibrators: 1) one trained on an easy in-
distribution dataset, and 2) the other trained on a severely
OOD data set with high difficulty. By estimating how much
a new test set deviates from the high-difficulty calibration
set, we compute a test adaptive weight to balance the force
between the two calibrators. We show that our proposed
ACE method improves three existing post-hoc calibration
algorithms such as Spline [10] on commonly used OOD
benchmarks. Moreover, our method does not have compro-
mised calibration performance for in-distribution data.

2. Related Work

Post-hoc calibration calibrates a trained neural network
by rescaling confidence scores [1, 9, 10, 16, 18, 21, 23, 26,

, 34, 39, 40]. For example, as a multi-class extension of
Platt scaling, vector scaling and matrix scaling [9] introduce
a linear layer to transform the logits vector to calibrate the
network outputs. Spline [10] obtain a recalibration function
via spline-fitting, which directly maps the classifier outputs
to the calibrated probabilities. Dirichlet [ | 8] propose a multi-
class calibration method, derived from Dirichlet distributions.
Rahimi et al. [26] propose a general post-hoc calibration
function that can preserve the top-k predictions of any deep
network via an intra-order-preserving function. Our work
seeks to improve the OOD performance of existing post-hoc
calibrators such as vector scaling, temperature scaling, and
spline, through an ensemble mechanism.

Out-of-distribution calibration. A few works study
calibration under distribution shift [28, 36]. To improve
the post-hoc calibration under distribution shift, some stud-
ies [28, 31] propose to modify the calibration set to represent
a generic distribution shift. Moreover, prediction uncertainty
is studied in [17]. Based on the uncertainty, an “accuracy
versus uncertainty” calibration loss is proposed to encourage
a model to be certain of correctly classified samples and
uncertain of inaccurate samples. In comparison, our method
is based on whether samples are correctly or incorrectly
classified (i.e., difficulty) rather than uncertainty. We find
difficulty is an important factor for OOD calibration failure.
Furthermore, TransCal [36] uses unsupervised domain adap-
tation to improve temperature scaling. This method has a
high computational cost because, 1) it needs an additional
domain adaptation training process, and 2) every time it
meets a new test set, the domain adaptation model needs to
be re-trained. Gong et al. [7] study the calibration under
domain generalization setting where they develop calibration
methods on calibration sets from multiple domains. We
contribute from a different perspective to the existing liter-

ature. We provide insight into the role of dataset difficulty
on the failure of existing algorithms on OOD data. We then
propose a simple and effective ensemble strategy to improve
post-hoc calibrators in a test set adaptive manner.

3. Methodology
3.1. Preliminaries

Neural network notations. Considering the task of cali-
brating neural networks for n-way classification, let us de-
fine [n] == {1,...,n}, X C R? be the domain, Y = [n]
be the label space, and A,, denote the n — 1 dimensional
unit simplex. Given a training dataset D, of independent
and identically distributed (i.i.d.) samples drawn from an
unknown distribution 7 on X x ), we learn a probabilistic
predictor ¢ : R* — A,,. We assume that ¢ can be expressed
as the composition ¢ =: sm o g, with g : R? — R" being a
non-probabilistic n-way classifier and sm : R™ — A,, be-
ing the softmax operator sm;(z) = %, fori € ),
where the subscript ; denotes the i-th element of a vector.
We say g(x) is the logits of x with respect to ¢.

Definition of a calibrated network. When queried at
(x,y) € X x Y sampled from an unknown distribution m,
the probabilistic predictor ¢ returns § =: arg max; ¢;(x) as
the predicted label and p =: max; ¢;(x) as the associated
confidence score. We say ¢ is perfectly calibrated with re-
spect to 7, if p is expected to represent the true probability of
correctness. Formally, a perfectly calibrated model satisfies
P(§ = y|p = p) = p for any p € [0,1]. In practice, we
commonly use the Expected Calibration Error (ECE) [9] as
the calibration performance metric. It first groups all sam-
ples into M equally interval bins {B,,}M_, with respect
to their confidence scores, and then calculates the expected
difference between the accuracy and average confidence:
ECE = Zi\f:l |BT:”‘ lacc(B,,) — avgConf(B,,)|, where n
denotes the number of samples.

Post-hoc calibration learns a post-hoc calibration func-
tion f : R™ — R"™ such that the new probabilistic predictor
¢. = sm o f o g is better calibrated and tries to keep a
similar (or same) accuracy of the original network ¢.

3.2. Post-hoc Calibration Function Is Influenced by
Calibration Set Difficulty

Post-hoc calibration loss function. Assume we have a
held-out calibration dataset D. = {(x*,y*)}; with i.i.d
samples from the unknown distribution 7 on X x ) and a
calibration function f parameterized by some vector 6. The
empirical calibration loss is generally defined as,

1 Al i 4 A 2

where z' = g(x%), £ : Y x R" — R is a cost function,
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Figure 1. NLL values of correctly and incorrectly classified
samples. We use ResNet-152 on the in-distribution ImageNet cali-
bration set (as described in Section 4.1) and plot NLL probability
density of the two types of samples. We clearly observe that cor-
rectly classified samples generally have a much lower NLL value.

and A\ > 0 is the regularization weight. ¢(-, -) is the network
classification loss. Following existing literature, we employ
the commonly used negative log-likelihood (NLL) loss:

(y,f(z)) = —log(smy (f(g(x)))), 2)

where sm is softmax operator, and sm,, is its y-th element.

Plain fact: individual samples matter in the classifica-
tion loss. Apparently, a major component in the calibration
objective (Eq. 1) is the model classification loss (e.g., the
commonly used NLL loss, Eq. 2). If a sample is correctly
classified, the classification loss will likely return a small
value; If a sample is incorrectly classified, there will likely
be a high loss value. Therefore, whether an individual sam-
ple is correctly classified or not would lead to quite different
classification loss values.

We conduct an empirical analysis to verify this conclusion.
Specifically, we use ResNet-152 trained on ImageNet [4].
The NLL values of these samples are computed on the cali-
bration set (described in Section 4.1), and summarily drawn
in Fig. 1. It is clearly shown that the NLL values of correctly
classified samples are close to 0 while those of incorrectly
classified samples are significantly greater.

Collectively, calibration set difficulty influences cali-
bration optimization. To illustrate this point, we use NLL
as an example, which is a commonly used classification
loss. Given that the two types of samples have different NLL
values, we decompose the NLL loss into two parts:

Er(y.£(2)) = ~ 5 > loglom, (E(g(x), @)
where arg max sm(g(x*)) = y*, and,
1 & _
lr(y,f(2)) = N, > log(smyi(f(g(x), @
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Figure 2. The impact of calibration set difficulty (X2£) on

N
calibration performance (ECE). We manually select imageg from

the in-distribution calibration set to create new calibration sets of
various difficulty levels. The difficulty of the original calibration
set is 0.2723. We use the ResNet-152 model and an in-distribution
test set from ImageNet. We evaluate two methods (temperature
scaling, and Spline), and at the same time, mark the difficulty of
the original in-distribution calibration set (gray vertical dotted line).
We find the calibration sets having similar difficulty to the original
will lead to good calibration performance and vice versa.

where arg max sm(g(x’)) # y*. In Eq. 3 and Eq. 4, Nr
and N note the numbers of correctly and incorrectly classi-
fied samples, respectively. By adjusting %—i, the overall NLL
value changes, which will affect the optimized calibration
parameters 6 (a.k.a. the calibration function).

Formally, we define the difficulty of a dataset as %—; Note
that, the difficulty of a dataset (with respect to a classifier)
shares the same meaning as classifier accuracy on this dataset.
The above analysis indicates that optimized calibration pa-
rameters are affected by the difficulty of the calibration set:
1) 6 trained on a more difficult calibration set tends to have
a larger classification loss values (Eq. 2) and thus a larger
calibration loss (Eq. 1). 2) € trained on an easier calibration
set likely corresponds to a smaller classification loss (Eq. 2)
and thus a lower calibration loss (Eq. 1).

We empirically verify the above conclusion in Fig. 2,
where we create calibration sets with various levels of dif-
ficulty (%—g) and mark the difficulty level of the original
calibration set. It indicates that calibration set difficulty
indeed influences ECE of two calibration methods: temper-
ature scaling (NLL) [9], Spline (KS-error) [10]. Moreover,
when testing the original in-distribution data, if the difficulty
of the created calibration dataset is similar, the two calibra-
tion methods generally have good calibration performance.
However, calibration performance is poorer when the diffi-
culty of created calibration dataset is very different from that
of the original calibration dataset.

The above analysis mostly uses the NLL loss as an ex-
ample, but can also apply to some other classification loss
functions (e.g., the KS-error used in Spline is verified in
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Fig. 2, the cross-entropy loss and the focal loss). These
loss functions are usually influenced by individual samples,
and thus collectively the dataset difficulty would eventually
impact the calibration performance.

3.3. Calibration Set Difficulty Influences Out-of-
distribution Calibration

Having analyzed that calibration set difficulty influences
the calibration performance on in-distribution test sets, we
provide a tentative explanation of why calibrators trained
on in-distribution data fail on OOD ftest sets. Essentially, an
OOD test set usually has a different difficulty level from the
in-distribution calibration set. In fact, the OOD difficulty
level is usually higher, i.e., there is a higher percentage
of incorrectly classified samples, because of the domain
gap problem [2, 5, 22]. Therefore, the calibration mapping
function £ that an OOD test set needs is different from the in-
distribution calibration set. When training a calibrator on in-
distribution data, its performance would thus be suboptimal
on the OOD test data.

Moreover, our reasoning also helps understand why some
existing OOD calibration methods have compromised cali-
bration performance on in-distribution test sets. Specifically,
these methods (e.g., Perturbation [31]) obtain their mapping
functions on some modified in-distribution calibration set
(e.g., adding Gaussian noise), which to some extent mimics
the OOD test set. However, this modification operation is
not adaptive, that is, they do not change w.r.t the test set.
When the test set changes to an in-distribution one, its op-
timal calibration parameters would be different from those
obtained from the modified calibration set. This is possible
because of different difficulty levels.

3.4. Adaptive Calibrator Ensemble

Overview. To achieve desirable calibration under dis-
tribution shifts, we propose a simple and effective method
called Adaptive Calibrator Ensemble (ACE). Using an in-
distribution calibration set as input, ACE outputs an OOD
calibrator as if having been trained on a calibration set with
a proper difficulty level. To do so, we first seek two cali-
bration sets with extreme difficulty levels: an in-distribution
difficulty level (easy) and a high difficulty level (hard). We
then use an adaptive weighting scheme to fuse the output of
calibrators trained on the two extreme calibration sets.

Finding two datasets with extreme difficulty levels.
Straightforwardly, we secure the “easy” one as the in-
distribution calibration set itself D,. To obtain the “hard”
calibration set Dy,, we perform sampling on D, aiming to
increase the difficulty. Specifically, we apply the classi-
fier on the in-distribution calibration set to find correctly
classified samples, incorrectly classified samples, and their
numbers N7 and Ng (N2 is usually greater than N7).
To create D;,, we calculate its N and Ng as follows,

Nh = Ng, NIt = N¢/d, where d € (0, 00) is a pre-defined
difficulty level (hyperparameter). We then randomly sam-
ple D, to achieve this difficulty level. When d is relatively
large”, the calibration set contains many more incorrectly
classified samples than correctly classified ones, allowing us
to have the desired calibration set Dj,, which is considered
seriously out-of-distribution and hard.

Training two calibrators on the two extreme datasets.
On each of the obtained the easy and the hard calibration
sets D, and Dj,, we train a calibrator. Let g denote the deep
learning model. For calibration dataset D, = {(x,y*)} |,
where N, means the number of samples of D,,, we train a
calibration function f,, and the calibrated logits are denoted
as z\ = f,(z'.). Here, z; is the original uncalibrated
logits for a new test set that is either in-distribution or OOD.
Similarly, for calibration set D, = {(x’, %)} " , where N},
means the number of samples of Dy, we train a calibration
function fj,, the calibrated logits is z, = £5,(z’ ).

An adaptive method to ensemble outputs of the two
calibrators. Given D, and Dy, we intuitively speculate that
the difficulty of a usual out-of-distribution test set would
be positioned in between. As such, we propose to compute
an adaptive weight « to balance the difficulty of these two

outputs produced by calibrators, then the final output z, is:
Zeal = 2o+ (1 — @) - zp. 5)

In designing a reasonable weight o, we request it to be
test-set-adaptive. First, when the distribution of an OOD test
set is similar to the original calibration set D, « — 1, so that
the system reduces to in-distribution calibrator z,; Second,
when a test set is seriously out-of-distribution, a — 0.

Moreover, average confidence score could serve as an un-
supervised indicator of the degree of how out-of-distribution
a test set is [8]. So given an unlabeled test set Diy, We can
estimate an approximate OOD degree of this test set. Here,
we compute the ad-hoc weight « as,

_avgConf(Dyeyr) ©)
~ avgConf(D,) ’

where avgConf(-) calculates the average confidence score
of a dataset. In the experiment, we will evaluate some fixed
values of «, which are useful on some occasions but less
so on others. Moreover, being fixed implies that it does not
work for in-distribution data unless it is fixed to 1.

The ensemble scheme works efficiently. To illustrate
how ACE ensembles the two calibrators, here we use Temper-
ature Scaling [9] as an example whose calibration function
is f(z) = T - z where T is a learnable scalar parameter.
Let T, and T}, denote the temperature value which learned

2By default, we set d = 10, which means 10 times more incorrectly
classified samples than correct ones. Notice that we set d = 9 for CIFAR-
10-C, which equals the randomly classified result.
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on the easy calibration set D, and the hard calibration set
Dy, respectively. z,; is the uncalibrated logits of test set.
Referring to Eq. 5, the calibrated logits of test set z, is:

anl:a'zori'To+(1_a)'Zori'Th

=Zoi - (- To+ (1 —a)-Th). @

Thus the equivalent value of temperature T, which has
Zcal = Zori - Lcal can be computed as:

Ta=a-To+(1—a) Th. (8)

According to Eq. 8, we show that the output-space ensemble
(Eq. 5) is equal to the weight-space ensemble of two cali-
brators. Additional, weight-space ensemble methods have
shown superior performance and robustness gains over single
models [11, 19, 25, 37, 41]. Therefore, the outputs produced
by our ensemble scheme shows to have better calibration
performance than single calibrator produces.

3.5. Discussion

Difficulty is a relative concept. Despite being formu-
lated as %—5, difficulty also depends on the model or classi-
fier. For stronger models, the difficulty level would be lower
(even Nr = 0) and vice versa. In this paper, we assume
fixed models and choose not to put the model as a subscript
in the definition of difficulty for simplicity.

Domain gap vs. difficulty. Domain gap is used to de-
scribe the distribution difference between domains and cer-
tainly exists between an OOD test set and the calibration set.
Therefore, a possible way to calibrate OOD data is to find a
dataset with similar distribution to the OOD test set, which is
essentially reflected in [28, 31]. Note that distribution shift
does not equal high difficulty. In fact, high difficulty is one
of consequences of distribution shift/OOD data. Our paper
points out a new way to craft the domain gap by modifying
the difficulty of the calibration set. In fact, domain gap is
a complex phenomenon and related to many factors aside
from difficulty, so it would be interesting to investigate other
factors which can help OOD calibration.

An alternative method. We emphasize the main contri-
bution is to report that calibration set difficulty is influential
on OOD calibration performance. The designed method, in
comparison, is more from an intuitive perspective. There
might be other alternatives. For example, we could use
the average confidence of a dataset (we use it in Eq. 6 to
calculate « instead) to estimate its difficulty and create a
calibration set that has a closer difficulty level to the OOD
test dataset. We show this alternative also gives improve-
ment over some baselines. (Please refer to the supplemental
material for more details.)

Potential limitation and direction. Our weighting
method (Eq. 5) assumes that an OOD test set sits between
D, and Dj, in terms of difficulty. This assumption should

be valid for most cases in practice because the difficulty of
D, is very low and that of Dy, is very high (we use d = 10
by default, which translates to 9.1% top-1 accuracy). We
empirically observe that d = 10 is effective, which trans-
lates to an accuracy of 9.09%. We believe a dataset with
9.09% accuracy is difficult enough to cover a wide range of
test sets. Moreover, distribution shift occurs in a variety of
ways [3, 13, 29, 20, 33]. There might exist scenarios (e.g.,
adversarial attack) where confidence score is less effective in
describing the distribution shift. In such cases, our method
might not be able to achieve significant improvement over
existing algorithms. In fact, it would be interesting to explore
other potential ways to characterize distribution discrepancy.
Furthermore, in realistic application scenarios, we may have
access to calibration datasets from multiple domains [7]. To
better use these data, one potential way is to learn a ACE
model on each calibration set. Then, we ensemble the re-
sults of all learned ACE models for a given unknown test set.
We evaluate our proposed ACE method under the domain
generalization setting in the supplemental material.

4. Experiment
4.1. Experimental Setup

Neural Networks. We consider both convolutional
and non-convolutional networks. Specifically, we use
ResNet-152 [12], ViT-Small-Patch32-224 [6] and Deit-
Small-Patch16-224 [32]. The three networks are either
trained or fine-tuned on the ImageNet training set [4].

Calibration set and in-distribution test set. Following
the protocol in [10], we divide the validation set of ImageNet
into two halves: one for the in-distribution test (namely
ImageNet-Val), the other for learning calibration methods
(namely calibration set D,).

Out-of-distribution test sets. In the experiment, we use
the following six real-world out-of-distribution benchmarks.
(i) ImageNet-V2 [27] is a new version of ImageNet test
set. It contains three different sets resulting from different
sampling strategies: Matched-Frequency (A), Threshold-
0.7 (B), and Top-Images (C). Each version has 10,000
images from 1000 classes; (ii) ImageNet-S(ketch) [35]
shares the same 1000 classes as ImageNet but all the im-
ages are black and white sketches. It contains 50,000
images; (iii) ImageNet-R(endition) [13] contains artificial
renditions of ImageNet classes. It has 30,000 images of
200 classes. Following [13], we sub-select the model log-
its for the 200 classes before computing calibration met-
rics. (iv) ImageNet-Adv(ersarial) [15] is adversarially se-
lected to be hard for ResNet-50 trained on ImageNet. It
has 7,500 samples of 200 classes. As for ImageNet-R,
we sub-select the logits for the 200 classes before comput-
ing the calibration metric. Moreover, we test on synthetic
CIFAR-10-C(orruptions) and ImageNet-C(orruptions) [14].

19337



Table 1. OOD calibration performance of our method (ACE) integrated with three post-hoc methods: vector scaling, temperature scaling
(Temp. Scaling), and Spline. ECE (25 bins, %) for top-1 predictions is reported. We use ResNet-152 on various image classification
datasets with various distribution shifts. For each column, the lowest number is in bold and the second lowest underlined. Our method

(ACE) effectively improves the post-hoc methods on 15 out of 18 occasions.

/v denotes ECE is lower / higher than the post-hoc method

when being used alone, with statistical significance (p-value < 0.05) based on the two-sample t-test.

Methods ImgNet-V2-A ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R ImgNet-Adv
uncalibrated 9.5016 6.2311 4.3117 24.6332 17.8621 50.8544
Vector Scaling 6.8068 4.2184 2.9258 20.3726 14.5037 44.7593
+ ACE 5.6291 3.7742 3.1141 15.8747 10.6343 40.5773
+0.0397 +0.0237 +0.0150 ¥ +0.0252 +0.0356 +0.0491
Temp. Scaling 4.4413 2.7309 1.6831 15.7879 10.4797 42.6302
+ ACE 3.5615 2.5692 1.7021 10.3915 6.7458 38.0651
+0.0028 +0.0013 +0.0001 ¥ +0.0092 +0.0083 +0.0114
Spline 4.5321 1.8034 1.3357 19.6392 13.1116 45.3623
+ ACE 2.8201 2.0235 1.0550 6.9264 6.8533 31.0926
+0.0283 +0.0154 ¥ 40.0092 40.0864 +0.0011 +0.0422

Both these two datasets are modified with synthetic pertur-
bations such as blur, pixelation, and compression artifacts
at a range of severities. We use 80 different distortions (16
different types with 5 levels of intensity each) which are the
same as those in [24].

Post-hoc calibration methods. In the experiment, we
validate the effectiveness of ACE by integrating it with the
existing calibration methods through which we obtain cal-
ibrated logits z (Section 3.4). Specifically, we use vector
scaling [9], temperature Scaling [9], and Spline [10] as base-
line calibrators, and compare with a recent method Pertur-
bation [31] which is specifically designed for OOD cali-
bration. In addition, we also compare with more existing
methods, i.e., Ensemble [19, 24], SVI [38], SVI-AvUC and
SVI-AVUTS [17], to show our method competitive.

4.2. Calibration on Out-of-distribution Datasets

ACE improves calibration methods on OOD datasets.
We evaluate our method combined with three post-hoc cal-
ibrators on six out-of-distribution test sets and compare it
with those calibrators used alone. Table 1 shows ECE (using
25 bins) results of ResNet-152. Our ACE is shown to con-
sistently improve the OOD calibration results of the three
baseline calibrators in most of the test cases. For exam-
ple, when calibrating ResNet-152, our method improves
temperature scaling by 0.88%, 0.17%, 5.40%, 3.73% and
4.57% decrease in ECE, on ImageNet-V2-A/B, ImageNet-
S/R/Adyv, respectively. Under the same settings, the ECE of
our method is slightly higher (0.019%) than the baseline on
the ImageNet-V2-C dataset. We also report other metrics
(e.g., Brier Score, KS-Error) in the supplemental material.

ACE works effectively under two other neural net-
works. To show the effectiveness of our method for different

backbones, we adopt two transformer models (ViT-Small-
Patch32-224 and Deit-Small-Patch16-224) as backbones,
and experimental settings are the same as those in Table 1.
Table 2 indicates that for backbone ViT-Small-Patch32-224
our method reduces ECE of the three baselines on five out of
the six OOD test sets. For example, compared with Spline,
ECE of our method is 1.82%, 0.28%, 11.13%, 6.16% and
14.53% lower on ImageNet-V2-A/C, ImageNet-S/R/Adv, re-
spectively. On the other hand, Table 2 demonstrates that for
the Deit-Small-Patch16-224 backbone, our method is ben-
eficial on all the six OOD test sets. In addition, comparing
the uncalibrated results of the three backbones, transformer
models generally have a lower ECE under OOD test sets.
Specifically, ViT-Small-Patch32-224 is shown to be superior
to Deit-Small-Patch16-224 on four out of six test sets.

Comparison with the existing calibration methods. In
Table 3, we compare our method with the state-of-the-art
methods, i.e., various variants of AvUC [17] and Ensem-
ble [19], on CIFAR-10-C and ImageNet-C. Following the
protocol in [24, 17], we report the results at intensity 5. Our
method improves Spline by reducing ECE by 11.18% and
6.70% on CIFAR-10-C and ImageNet-C, respectively. Com-
pared with these methods, our method is competitive on both
ImageNet-C and CIFAR-10-C. For example, for CIFAR-10-
C, our method achieves 3.21% and 1.10% lower calibration
error than SVI-AvUTS and SVI-AvUC, respectively.

4.3. ACE Does Not Compromise ID Calibration

We show ECE results on in-distribution test set
(ImageNet-Val) using ResNet-152. We adopt the same three
post-hoc calibration baselines and Perturbation [3 1] for com-
parison. As shown in Fig. 3, we observe that the post-hoc
calibration baselines themselves effectively reduce the ECE
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Table 2. OOD calibration performance of our method (ACE) and Perturbation [
] (ResNet), ViT-Small-Patch32-224 [6] (ViT), and Deit-Small-Patch16-
] (Deit). All the other notations and settings are the same with Table 1. Our method improves the calibrator baselines in 16 out of 18

metric and report results using three neural networks: ResNet-152 [
224 [
scenarios, while Perturbation has mixed performance.

] applied on Spline [10]. We use ECE (%, |) as evlaution

Models Methods ImgNet-V2-A ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R ImgNet-Adv
Spline 4.5321 1.8034 1.3357 19.6392 13.1116 45.3623
ResNet + ACE 2.8201 2.0235 v 1.0550 6.9264 6.8533 31.0926
+ Perturbation 5.4175 v 8.2109 v 9.3326 v 7.9805 29171 32.3677
Spline 4.7572 1.6859 1.4683 15.9864 12.5494 38.0404
ViT + ACE 2.9329 2.0832 v 1.1831 4.8514 6.3699 23.5147
+ Perturbation 5.0302 v 6.3854 v 7.8929 v 5.9254 3.7302 22.5118
Spline 5.0289 2.1261 1.3923 20.7714 9.6996 31.3674
Deit + ACE 2.4576 1.6475 1.3544 5.6622 3.6721 15.7885
+ Perturbation 3.3520 2.4547 v 2.9461 v 15.9003 8.1481 27.9474

Table 3. Method comparison on CIFAR-10-C and ImageNet-C with ResNet-20 and ResNet-50, respectively. Following the protocol in [24],
we report mean ECE (10 bins for CIFAR-10-C and 25 bins for ImageNet-C, %) across 16 different types of data shift at intensity 5 with
lowest numbers in bold and the second lowest underlined. For each row, we compare ACE with the best of the competing ones (i.e.,

SVI-AvUC) using the two-sample t-test.

Dataset Uncalibrated Ensemble [19] SVI [38] SVI-AVUTS [17] SVI-AvUC Spline [10] Spline+ACE
CIFAR-10-C 0.1942 0.1611 0.2389 0.1585 0.1374 0.3382 0.1272
ImageNet-C 0.3151 0.0880 0.1188 0.0800 0.0542 0.1147 0.0477
90 7 8.1501 40
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Figure 3. Evaluation of ACE on the ID test set ImageNet-Val.
We calibrate the ResNet-152 classifier and use ECE (%) for top-
1 predictions as evaluation metric. “n.s." means the difference
between results is not statistically significant (p-value > 0.05).

score compared with the uncalibrated system and that Spline
generally performs the best. Perturbation is shown to dete-
riorate the calibration performance for all three baselines.
Because Perturbation is not adaptive to different test sets, its
effectiveness is not guaranteed when a test set is out of its
optimal domain confined by the generated diverse set. In
comparison, when our method is integrated with the base-

Figure 4. [Effect of the size of the two extreme calibration
sets. Starting from original size (25, 000 and 5, 885 images respec-
tively for D, and D},), we randomly select a certain percentage
of calibration sets. We report ECE of ResNet-152 with Spline on
ImageNet-Val and ImageNet-V2-A.

lines, the resulting calibration performance is very close to
the baselines when being used alone. This is mainly because
of the adaptive weighting scheme (see Section 3.4 for more
explanations). Thus our method is not compromised on the
in-distribution test set.

4.4. Component Analysis of ACE

Impact of the size of the two extreme calibration sets.
ACE uses an “easy” calibration set D,, (the original calibra-
tion set) and a “hard” calibration set Dj,. The original D,
and Dj, have 25, 000 and 5, 885 images, respectively. Here,
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Figure 5. Impact of hyperparameter d on OOD calibration.
We densely sample values of d € (0.5,15) and report ECE (%)
of ResNet-152 with Spline on ImageNet-V2-A, ImageNet-S and
ImageNet-Adv. We also mark the results using our empirically
selected value (d = 10) and the optimal values shown by the dotted
vertical line with the same color.
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Figure 6. Comparison of different weighting schemes for ACE.
We report the mean ECE (%) on six OOD datasets (ImageNet-V2-
A/B/C, ImageNet-S, ImageNet-Adv, ImageNet-R) and one ID test
set (ImageNet-Val). Spline and ResNet-152 is used.

we simultaneously reduce the size of D, and Dy, by a cer-
tain percentage and report calibration performance (ECE)
in Fig. 4. From the results on the in-distribution dataset
ImageNet-Val and out-of-distribution dataset ImageNet-V2-
A, we observe that our method is relatively stable on both
test sets when the size changes. Yet for best results, we
recommend using possibly large calibration sets.

Impact of the difficulty of D;,. To analyze the impact of
hyperparameter d (Section 3.4), we create multiple Dy, with
various values of d. Results are shown in Fig. 5. We observe
that calibration performance is slightly higher on ImageNet-
Adv when the hard calibration set is more difficult, while
the performance on the other two datasets drops at the same
time. Moreover, we find the optimal difficulty is different for
various test sets. That said, by setting d = 10, we generally
have good performance, and it is important to note that this

50
—o— ImgNet-A
—o— ImgNet-S
404 —®— ImgNet-R
ImgNet-V2-A

;><'/,/'/

0 T T T
0.0 0.2 0.4 06 0.8 1.0

adaptive weight a
Figure 7. Densely sampled values of « (0 to 1) vs. our com-
puted o (Eq. 6) Comparing with the densely sampled values of
a, computed a (shown by the dotted vertical line) is close to the
optimal value with reasonable difficulty for each test set.
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8.5 1

8.0 1
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Figure 8. Effectiveness of o computed in test batches of differ-
ent sizes (16, 64, 128, 256 and 512). Comparing with calculating
« on the full set, using test batches yields similar ECE (%) espe-
cially when the batch size is at least 64. Temperature scaling (T.S.)
is used as the baseline calibrator for our ACE. We also include the
original baseline results in the figure (e.g., org T.S.).

difficulty level is considerably high (equivalent to 9.09%
classification accuracy) and thus covers most test scenarios.

Comparing fixed weighting schemes with the adaptive
weight We compare the adaptive weight (o = %)
with setting « to a few fixed values 0.2, 0.5, and 0.9. The
difficulty level for the out-of-distribution situation is 10. We
evaluate the three calibration baselines on the six out-of-
distribution test sets and one in-distribution test set using
ResNet-152 as backbone and use the mean ECE (%) value
over all the seven test sets (six OOD datasets and one ID test
set) as evaluation metric.

As shown in Fig. 6, when applying our ACE on Spline,
using @ = 0.2 and o = 0.5 deteriorate calibration perfor-
mance, while « = 0.9 improves the baseline. However,
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without test labels, it is infeasible to set an appropriate o for
each test set. Moreover, the test sets are changed, setting
fixed values of o might be effective in some cases and be less
useful in others. In contrast, our designed test-set-adaptive
( Eg. 6) is shown to improve the baselines on various OOD
test sets. Also, we report the value of « used for each test
set in Table 1 and Table 2 in the supplemental material.

Optimal adaptive « vs. our computed « (Eq. 5). We
compare both values in Fig. 7. First, for datasets with nor-
mal difficulty (e.g., ImageNet-V2-A), the value computed
by our scheme is quite close to the optimal value. Sec-
ond, for extremely difficult datasets such as ImageNet-S and
ImageNet-A, a computed by our proposed method is less
optimal. That said, we emphasize that in practice it is infea-
sible to do a greedy search because the images of test set are
unlabeled, where our ACE method is generally useful.

Test data are given in batch. In real-world scenarios,
test data may not all be accessible. Here we study how the
calibration performance changes when test data are given
in batches of various sizes. In Fig. 8, a is calculated from
test batches of various sizes. We observe our method still
achieves improvement over the temperature scaling baseline
and has similar ECE with the method computed on the full
test set under reasonably large batch sizes (> 64).

5. Conclusion

This paper studies how to calibrate a model on OOD
datasets. Our important contribution is diagnosing why exist-
ing post-hoc algorithms fail on OOD test sets. Specifically,
we report the difficulty of the calibration set influences the
calibration function learning, and in other words, an OOD
test set would witness poor calibration performance if the
calibration set does not have an appropriate difficulty level.
Realizing the importance of calibration set difficulty, we
design a simple and effective method named adaptive cali-
brator ensemble (ACE) which combines the outputs of two
calibrators trained on datasets with extreme difficulties. We
also demonstrate how the ensemble scheme works for tem-
perature scaling. We show that ACE improves three com-
monly used calibration methods on various OOD calibration
benchmarks (e.g., ImageNet-C and CIFAR-10-C) without
degrading ID calibration performance. In future work, we
would like to further study how the domain gap and cali-
bration set difficulty interact with each other and thereby
improve OOD calibration.
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