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Similarity-preserving Image-image Domain
Adaptation for Person Re-identification

Weijian Deng, Liang Zheng, Qixiang Ye, Yi Yang and Jianbin Jiao

Abstract—Person re-identification (re-ID) models often fail to generalize well to new domains. We propose a “learning via translation
framework based on the Generative Adversarial Network (GAN). It consists of two components, i.e., 1) translating the labeled source
images to style of the target domain, and 2) learning a re-ID model for testing on the target domain using the translated images. Typically,
source-target translation suffers from information loss with respect to the discriminative cues that form human identity. To this end, we
propose a similarity-preserving generative adversarial network (SPGAN) and its upgraded version, end-to-end SPGAN (eSPGAN).
SPGAG improves the first component of the framework. It enforces two heuristic constraints in an unsupervised manner, 1) preserving
self-similarity of human identity, and 2) introducing domain dissimilarity, such that the source images preserve the discriminative cues
while being transferred to the target style. In comparison, eSPGAN seamlessly integrates the two components of the framework. During
its end-to-end training, feature learning guides image translation to preserve the underlying identity information of an image. Meanwhile,
image translation improves feature learning by providing identity-preserving training samples of the target domain style. Experiment on
two large-scale datasets shows that both SPGAN and eSPGAN obtain state-of-the-art domain adaptation results.

Index Terms—Person Re-Identification, Domain Adaptation, Learning via Translation
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1 INTRODUCTION

THIS article studies the domain adaptation problem in
person re-ID under a “learning via translation” frame-

work. In our setting, the source domain is fully annotated
with identity labels, and the target domain does not have
any ID labels. In the community, domain adaptation of
re-ID is gaining increasing popularity, because of 1) the
expensive labeling process and 2) when models trained on
one dataset are directly used on another, the re-ID accuracy
drops dramatically [1] due to dataset bias [2].

A commonly used strategy to above-mentioned problems
is unsupervised domain adaptation (UDA). But this line
of methods usually assumes that the source and target
domains contain the same set of classes. This assumption
does not hold in person re-ID because different re-ID datasets
usually contain entirely different persons (classes). In UDA,
a recent trend is image-level domain translation [3], [4], [5],
which motivates us to explore a “learning via translation”
framework. The framework consists of two components.
First, labeled images from the source domain are translated
to the target domain, so the translated images and images
from the target domain share similar styles, e.g., backgrounds,
resolutions, and light conditions. Second, the style-translated
images and their associated labels are used for supervised
learning in the target domain. In literature, commonly used
image-level translation methods include [6], [7], [8], [9]. In
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our work, we adopt CycleGAN in the baseline.
In person re-ID, there is a distinct yet unconsidered

requirement for the baseline described above: the visual
content associated with the ID label of an image should be
preserved during image-image translation. In our scenario,
such visual content usually refers to the underlying (latent)
ID information for a foreground pedestrian. To meet this
requirement tailored for re-ID, we first propose a heuristic
solution, named Similarity Preserving Generative Adversar-
ial Network (SPGAN). Then, we further study the relation
between feature learning and image translation, and propose
eSPGAN, an upgrade version of SPGAN.

SPGAN is motivated by two aspects. First, a translated
image, despite of its style changes, should contain the same
underlying identity with its corresponding source image.
Second, in re-ID, the source and target domains contain two
entirely different sets of identities. Therefore, a translated
image should be different from any image in the target
dataset in terms of the underlying ID. SPGAN is composed
of an Siamese network (SiaNet) and a CycleGAN. Using a
contrastive loss, the SiaNet pulls close a translated image and
its counterpart in the source, and push away the translated
image and any image in the target. In this manner, the
contrastive loss satisfies the specific requirement in re-ID.
Note that, the added constraints are unsupervised, i.e., the
source labels are not used in source-target image translation.
Through the coordination between CycleGAN and SiaNet,
we are able to generate samples which not only possess the
style of target domain but also preserve their underlying ID
information from the source domain.

Essentially, SPGAN focuses only on improving the first
component of the “learning via translation” framework, i.e.,
source-target image translation, which is actually indepen-
dent of the feature learning component. Thus, the impact
of image translation on feature learning and the reverse
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Fig. 1. Pipeline of the “learning via translation” framework. First, we translate the labeled images from a source domain to a target domain. Second,
we train re-ID models with the translated images using supervised feature learning methods. SPGAN is only used to improve the first component of
the framework, while eSPGAN simultaneously learns the two components in an end-to-end-manner.

remains unknown. A natural question then arises: can these
two components be jointly optimized, so that they could
benefit each other?

In light of this question, we propose eSPGAN by seam-
lessly integrating the two components into an end-to-end
training system. In eSPGAN, there exists a mutually ben-
eficial interactive loop between image translation and re-
ID feature learning. Thus, the translated images are better
suited for the re-ID task, leading to higher re-ID accuracy.
More specifically, feature learning guides image translation to
preserve the identity of images during translation; in return,
image translation delivers the knowledge of how a person
looks like on the target domain to feature learning. During
training, we alternately optimize the two components, so that
knowledge and constraint of both components are gradually
transferred to each other.

This paper extends our previous conference paper [10] in
several aspects. Primarily, we integrate the two components
of “learning via translation framework into an end-to-
end system, yielding eSPGAN. In eSPGAN, we discover
the mutually benefit between image translation and re-ID
feature learning. In addition, insightful analyses of the visual
changes conducted by the image translation are provided.
Also, the difference from other similarity-preserving gener-
ation methods is discussed. Finally, we present significant
extensions in the experiment to validate the effectiveness
of our methods: 1) we report higher results of baseline
methods and SPGAN with our latest implementations; 2) we
extensively investigate eSPGAN.

Overall, the contributions of this study are mainly in the
following four aspects:

• To address the domain adaptation in person re-ID,
we present a “learning via translation framework.
We further introduce SPGAN, a heuristic method, to
preserve the underlying ID information during source-
target image translation. SPGAN better qualifies the
translated images and produces competitive domain
adaptation accuracy.

• We report the mutual benefit between generative
image translation and discriminative feature learning.
Inspired by this, we propose ePSGAN, an upgraded
version of SPGAN, by simultaneously optimizing
image translation and feature learning for the domain
adaptative person re-ID. In eSPGAN, there exists
a beneficial interactive loop between image trans-
lation and re-ID feature learning. Thus, the translated
images are better suited for re-ID feature learning,
leading to higher re-ID accuracy.

• We provided insightful analyses of the “style change
introduced by image translation. We find that “style
change involves various factors, such as illumination
and color composition. This helps us take a closer look
at the “style transfer and gives a better understanding
of the dataset bias.

• As a minor contribution, we propose a local max
pooling (LMP) scheme as a post-processing step. LMP
is tailored for the domain adaptation scenario, and
consistently improves over SPGAN and eSPGAN.

The reminder of this paper is organized as follows.
Related work is presented in Section 2. Section 3 describes
SPGAN and eSPGAN. In Section 4 , the experimental results
are presented and analyzed. Section 5 concludes the paper.

2 RELATED WORK

Image-image translation. Image-image translation aims
at learning a mapping function between two domains.
As a representative image-image translation method, the
“pixel2pixel” framework uses input-output pairs for learning
a mapping from input to output images. In practice, the
paired training data is often difficult to acquire and hence the
unpaired image-image translation is often more applicable.
To tackle the unpaired setting, a cycle consistency loss is
introduced by DiscoGAN [6], DualGAN [7], and CycleGAN
[8]. Benaim et al. [11] propose an unsupervised distance loss
for one side domain mapping. Liu et al. [12] propose a general
framework by making a shared latent space assumption that
the corresponding images in two domains are mapped to the
same latent code. Recently, some methods [9], [13] have been
proposed to learn the relations among multiple domains. In
this work, while we aim to find mapping functions between
the source domain and target domain, our primary focus is
similarity-preserving mapping.

Neural style transfer [14], [15], [16], [17], [18], [19], [20]
is another strategy of image-image translation, which aims
at rendering the content of an image in the style of another
image. Gatys et al. [21] employ an optimization process to
match feature statistics in layers of a convolutional network.
The optimization is replaced by a feed-forward neural
network in [14], [15], [16]. Huang et al. [19] propose a AdaIN
layer for arbitrary style transfer. Unlike the neural style
transfer, our work focuses on learning the mapping function
between two domains, rather than two images.

Unsupervised domain adaptation. Our work is related
to unsupervised domain adaptation (UDA). Within this
community, a portion of methods aim to learn a mapping
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between source and target distributions [22], [23], [24], [25].
As a representative UDA method, Correlation Alignment
(CORAL) [25] matches the mean and covariance of two
distributions.

Other methods seek to find a domain-invariant feature
space [26], [27], [28], [29], [30], [31], [32]. Long et al. [29]
use the Maximum Mean Discrepancy (MMD) [33] for this
purpose. Ganin et al. [31] and Ajakan et al. [32] introduce a
domain confusion loss to learn domain-invariant features. In
addition, several approaches estimate the labels of unlabeled
samples [34], [35], [36], [37]. The estimated labels are then
used to learn the optimal classifier. Zhang et al. [37] propose
a progressive method to select a set of pseudo-labeled target
samples. Sener et al. [36] use the K-nearest neighbors to
predict the labels of target samples.

Recent methods [3], [4], [5] use an adversarial approach
to learn a transformation in the pixel space from one domain
to another. The CYCADA [3] maps samples across domains
at both pixel level and feature level. We note that most
of the UDA methods assume that class labels are the
same across domains. However, the setting in this paper
is different, because different re-ID datasets contain entirely
different person identities (classes). Therefore, the approaches
mentioned above cannot be utilized directly for domain
adaptation in person re-ID.

Unsupervised person re-ID. Unsupervised person re-
ID approaches leverage hand-craft features [38], [39], [40],
[41], [42], [43] or learning based features [44], [45] as repre-
sentation. Hand-craft features can be directly employed in
the unsupervised setting, but they do not fully exploit data
distribution and fail to perform well on large-scale datasets.
Some methods are based on saliency statistics [44], [45]. Yu
et al. [46] use K-means clustering to learn an unsupervised
asymmetric metric. Peng et al. [47] propose an asymmetric
multi-task dictionary learning for cross-data transfer. Wang
et al. [48] utilize additional attribute annotations to learn a
feature representation space for the unlabeled target dataset.

Several works focus on label estimation of unlabeled
target dataset [1], [49], [50], [51]. Fan et al. [1] propose a
progressive method based on the iterations between K-means
clustering and IDE [52] fine-tuning. Ye et al. [49] use graph
matching for cross-camera label estimation. Liu et al. [50]
employ a reciprocal search process to refine the estimated
labels. Wu et al. [51] propose a dynamic sampling strategy for
one-shot video-based re-ID. Our work seeks to learn re-ID
models that can be utilized directly on the target domain and
can potentially cooperate with label estimation methods in
the model initialization.

Recently, some Generative Adversarial Network (GAN)
based methods are applied to explore domain adaptive re-ID
models. The most recent HHL approach [53] enforces cam-
eras invariance and domain connectedness simultaneously
for learning more generalizable embeddings on the target
domain. PTGAN [54], a concurrent work, adopts CycleGAN
[8] to generate training samples on the target domain. The
common characteristic of PTGAN and our SPGAN lies in that
they both consider the similarity between the generated and
original image. The key difference is that PTGAN requires
the foreground mask using an extra segmentation step, while
SPGAN leverages two unsupervised heuristic constraints to
preserve the identity of translated images.

3 PROPOSED METHOD

For unsupervised domain adaptation in person re-ID, we
are provided with an annotated dataset S = {(xsi , ysi )}

ns
i=1

of ns labeled images associated with |Cs| identities from the
source domain and an unlabeled dataset T = {xti}

nt
i=1 of

nt unlabeled images associated with |Ct| identities from the
target domain. Note that the label space of the source domain
Cs is totally different from that in the target domain Ct, i.e.,
Cs ∩ Ct = ∅. The goal of this paper is to use both the labeled
source images and the unlabeled target images to train a re-
ID model that generalizes well on the target domain. Briefly,
in Section 3.1, we introduce the “learning via translation”
framework. In Section 3.2, we revisit SPGAN. In Section
3.4, we extend the SPGAN to eSPGAN to comprehensively
study the relation between source-target image translation
and feature learning.

3.1 Learning via Translation

The “learning via translation” framework shown in Fig. 1.
This framework consists of two components, i.e., source-
target image translation for training data creation, and
supervised feature learning for person re-ID.

• Source-target image translation. Using a generative
function G(·) that translates the annotated dataset
S from the source domain to target domain in an
unsupervised manner, we “create” a labeled training
dataset G(S) on the target domain.

• Feature learning. With the translated dataset G(S)
that contains labels, supervised feature learning meth-
ods can be applied to train re-ID models.

In the baseline, source-target image translation is
achieved by CycleGAN. For feature learning, we adopt
several existing methods, such as identity discriminative
embedding (IDE+) [52] and part-based convolutional base-
line (PCB) [55].

As analyzed in Section 1, we aim to preserve the ID-
related cues for each translated image. We emphasize that the
ID information should not be the background or image style,
but should be underlying and latent. To this end, SPGAN
focuses on improving the image translation component of Fig.
1, so as to improve the re-ID accuracy. eSPGAN integrates
image translation and feature learning into an end-to-end
training system, and yields higher re-ID accuracy.

3.2 SPGAN

SPGAN mainly consists of SiaNet and CycleGAN, as shown
in Fig. 2. During the training, CyleGAN aims to learn
mapping functions between source and target domains, and
SiaNet learns a latent space that constrains the learning of
mapping functions.

CycleGAN introduces two generator-discriminator pairs,
{G,DT } and {F,DS}, which map a sample from source (tar-
get) domain to target (source) domain and produce a sample
that is indistinguishable from those in the target (source)
domain, respectively. The overall objective of CycleGAN can
be written as,

Lcyc(G,F,DT , DS) =Ladv(G,DT ) + Ladv(F,DS)

+ αLrec(G,F ),
(1)
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Fig. 2. SPGAN consists of two components: SiaNet (top) and CycleGAN
(bottom). CycleGAN learns mapping functions G and F between the two
domains, and SiaNet constraints the learning of mapping functions using
two heuristic similarity-preserving losses.

where Ladv denotes the standard adversarial loss [56], Lrec

represents the cycle consistency loss [8], and α controls the
relative importance of the cycle-consistent loss. We would
like to refer the readers to the CycleGAN [8] for more details
about these loss functions.

In the experiment, we observe in Fig. 4 (b) that the model
may change the color composition of the input image. This
is undesirable for re-ID feature learning. Thus, we introduce
the inside-domain identity constraint [57] as an auxiliary
for image translation. Inside-domain identity constraint is
introduced to regularize the generator to be an identity
matrix on samples from the expected domain, written as:

Lide(G,F ) =Exs∼pdata(S)
‖F (xs)− xs‖1

+ Ext∼pdata(T )
‖G(xt)− xt‖1,

(2)

where pdata(S) and pdata(T ) denote the sample distributions
in the source and target domain, respectively.

Similarity preserving loss function. We utilize the con-
trastive loss [58] to train the SiaNet M ,

Lcon(i, x1, x2) =(1− i){max(0,m− d)}2 + id2, (3)

where x1 and x2 form a pair of input vectors, d denotes the
Euclidean distance between the normalized embeddings of
the two input vectors, and i represents the binary label of
the pair. i = 1 if x1 and x2 are a positive pair; i = 0 if x1 and
x2 are a negative pair. m ∈ [0, 2] is the margin that defines
the separability of the negative pair in the embedding space.
When m = 0, the loss of the negative training pair is not
backpropagated in the system. When m > 0, both positive
and negative sample pairs are considered. A larger m means
the loss of negative training samples has a higher impact in
back-propagation.

Training data construction. In Eq. 3, the contrastive loss uses
binary labels of input image pairs. In this article, we design
these image pairs to reflect the proposed “self-similarity” and
“domain-dissimilarity” principles. Note that, training pairs
are constructed in an unsupervised manner, so that we use the
contrastive loss without additional annotations.

• self similarity. Suppose two samples denoted as xs and
xt come from the source domain and target domain,
respectively. Given G and F , we define two positive

(b)

self-similarity

(a)

domain-dissimilarity

self-similarity domain-dissimilarity

Fig. 3. Illustration of self-similarity and domain-dissimilarity. In each triplet,
left: a source-domain image, middle: a source-target translated version
of the source image, right: an arbitrary target-domain image. We require
that 1) a source image and its translated image should contain the same
ID, i.e., self-similarity, and 2) the translated image should be of a different
ID with any target image, i.e., domain dissimilarity. Note: the source and
target domains contain entirely different IDs. Best viewed in color.

pairs: 1) xs and G(xs), 2) xt and F (xt). In either
image pair, the two images contain the same person;
the only difference is that they have different styles.
In the learning procedure, we encourage SiaNet M to
pull these two images close.

• domain dissimilarity. For generators G and F , we also
define two types of negative training pairs: 1) G(xs)
and xt, 2) F (xt) and xs. This design of negative
training pairs is based on the prior knowledge that
datasets in different re-ID domains have entirely
different sets of IDs. Thus, a translated image should
be of a different ID from any target image. In this
manner, the network M pushes two dissimilar images
away. Training pairs are shown in Fig. 3. Some
positive pairs are also shown in (a) and (d) of each
column in Fig. 4.

Overall objective of SPGAN. The overall objective
function of SPGAN can be written as,

Lsp(G,F,DT , DS ,M) =Lcyc(G,F,DT , DS)

+ βLide(G,F )

+ γLcon(G,F,M),

(4)

where the first two losses belong to the CycleGAN formu-
lation [8], the parameters β and γ control the relative im-
portance of the identity loss of CycleGAN and the proposed
contrastive constraint. In other words, the contrastive loss
induced by SiaNet imposes a new constraint on the GAN
system. The optimization process of SPGAN is,

G∗, F ∗,M∗ = arg min
G,F,M

max
DT ,DS

Lsp(G,F,DT , DS ,M). (5)

Training procedure of SPGAN. In practice, we replace the
standard adversarial loss in Eq. 1 by the least-squares loss [8],
[59] to make training more stable. Specifically, for the adver-
sarial loss Ladv(G,DT ) in Eq. 1, we train the G to minimize
Exs∼pdata(S)

[DT (G(x
s)− 1)2] and train the DT to minimize

Exs∼pdata(S)
[DT (G(x

s))2] + Ext∼pdata(T )
[DT (G(x

t)− 1)2].
There are three parts in SPGAN, generators, discrimi-

nators, and SiaNet. They are optimized alternately during
training. When the parameters of any one part are updated,
the parameters of the remaining two parts are fixed. We train
SPGAN until convergence or reaching maximum iterations.
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3.3 Feature Learning

Feature learning is the second component of the “learning via
translation” framework. Once we have the style-transferred
dataset G(S) composed of translated images and their
associated labels, the feature learning step is the same as
supervised methods. We adopt the baseline ID-discriminative
Embedding (IDE+) following the practice in [52], [60]. Given
an annotated dataset G(S), IDE+ aims to learn a model
C by |Cs|-way classification with a cross-entropy loss. This
corresponds to,

Lc(C) = −E(G(xs), ys)
|Cs|∑
k=1

1[k=ys] log
(
σ(C(k)(G(xs)))

)
,

(6)

where σ denotes the softmax activation function.

3.4 End-to-end SPGAN (eSPGAN)

SPGAN only focuses on preserving the image identity
information during image translation. It is independent of
the subsequent feature learning component of “learning via
translation” framework. We believe the two components of
the framework could benefit each other if jointly trained: 1)
feature learning could guide image translation to generate
identity-preserving images without heuristic constraints; 2)
a stronger image translator will generate more beneficial
samples for feature learning, leading to more robust person
descriptors for the target domain. To this end, this article
further studies the inherent relation between these two
components. Specifically, we propose eSPGAN by merging
the two components into an end-to-end training system.

3.4.1 Objective
eSPGAN is a unified system. It translates images to the target
domain and learns re-ID features simultaneously. Following
the idea of learning via translation, eSPGAN consists of two
models: an image translator and a feature learner (Fig. 1). The
image translator translates source images to the style of the
target domain, and the feature learner learns discriminative
embeddings that can be used on the target domain. Note that
feature learner is differentiable with respect to the elements
in the translated image G(xs). Thus, the whole system can
be trained end-to-end.

Overall objective of eSPGAN. On the top of CycleGAN,
we adopt the feature learner as the supervisor of the image
translation. We alternately optimize the feature learner and
the image translator, 1) when training the feature learner,
we keep the image translator fixed, and learn a model
C by |Cs|-way classification; 2) when training the image
translator, we keep the feature learner fixed, and use its re-ID
accuracy as the guidance. The feature learner will propagate
a supervision signal (Eq. 6) to update the image translator,
so that the translated images could be classified correctly by
the former. Namely, the visual content associated with the
identity information of an image is preserved. The overall
objective function of eSPGAN can be written as,

Lesp(G,F,DT , DS , C) =Lcyc(G,F,DT , DS)

+ βLide(G,F )

+ λLc(G,C),

(7)

(a)

(b)

(c)

(d)

Market  Duke Duke Market

(e)

Fig. 4. Visual examples of image-image translation. The left four columns
map Market images to the Duke style, and the right four columns map
Duke images to the Market style. From top to bottom: (a) original image,
(b) output of CycleGAN, (c) output of CycleGAN + Lide, (d) output of
SPGAN, and (e) output of eSPGAN, respectively. We observe some
visual changes after image translation, such as resolution, illumination,
color, and background. Moreover, SPGAN and eSPGAN have the
characteristic of preserving underlying semantics of input images. Thus,
their translated images will share some visual similarities with the original
images. Best viewed in color.

where the first two losses belong to the CycleGAN formu-
lation [8]. The parameter λ controls the relative importance
of the feature learner constraint Lc(C). The optimization
process of eSPGAN is,

G∗, F ∗, C∗ = arg min
G,F,C

max
DT ,DS

Lesp(G,F,DT , DS , C). (8)

Training procedure of eSPGAN. Similar to SPGAN,
we also use the least-squares loss [8], [59] for training the
generator-discriminator pairs. The proposed eSPGAN adopts
an alternate optimization procedure. There are three parts
in eSPGAN: generators, discriminators and feature learner
(IDE+). While updating the parameters of a single part, the
parameters of the other two parts are fixed. We train eSPGAN
until convergence or the maximum iterations is reached.

3.4.2 Discussions on eSPGAN
In this section, we present a comprehensive discussion
on eSPGAN. We first introduce the knowledge transfer
mechanism of eSPGAN. Then, we analyze the crucial factor
that determines whether the end-to-end system can work
effectively. Moreover, the difference from other similarity-
preserving methods is provided. Finally, we fully compare
ePSGAN and SPGAN.

1. Bidirectional knowledge transfer. The optimizing
procedure of eSPGAN can be regarded as transferring
knowledge between the two components. The knowledge
transfer is bidirectional: the feature learner tells the image
translator how to preserve the identity of an image; the image
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Input (ID1) translated image

ID3

feature learner

Image generator

Fig. 5. Illustration of transferring knowledge of the person identity from
the feature learner to the image translator. In this example, the identity
of the original image is ID1, but its corresponding translated image is
miss-classified to ID3 by the feature learner. Namely, the identity similarity
between the original image and its translated image is not preserved. To
solve this problem, feature learner directly backpropagates the gradients
to the input pixels of the translated image, and further updates the image
translator (the red arrow). Thus, the image translator is guided to preserve
person identity during translation. Note that the feature learner is fixed
when we train the image translator.

source domain target domain

source domain target domain

source image target image translated image

Fig. 6. Illustration of transferring knowledge of the target domain from
image translator to feature learner. Images with green boxes and orange
boxes are on the source domain and target domain, respectively. Image
translator delivers the knowledge of how a person looks like on the target
domain to feature learner. Thus, the feature learner learns a domain
invariant feature space by using translated images and source images
for training.

translator provides what a person from source domain looks like
in target domain for the feature learner.

(a) Feature learner guides image translator. Feature learner
has the ability to distinguish between different identities, so
it serves as a guide for image translator. During training,
the translated image passes through the feature learner
with fixed parameters and computes the classification loss,
corresponding to Eq. 6. The feature learner then backprop-
agates the gradients to the input pixels of the translated
image, and further updates the image translator. Thus, the
image translator is guided to translate images that benefit
the classification of the feature learner. As we can interpret,
the translated image preserves its visual content associated
with its identity.

In an example shown in Fig. 5, the translated image is
misclassified by the feature learner because its identity is
somehow lost during translation. In this case, the feature
learner backpropagates a supervision signal to guide the
training of the image translator, so that the translated
image can be correctly classified. Namely, the visual content
associated with the identity of an image is preserved after
image translation.

(b) Image translator strengthens feature learner. As shown
in Fig. 6, image translator translates images from the source
domain to the target domain, i.e., image translator creates
a training dataset with labels in the target domain for
feature learner. Based on this, the feature learner can learn
discriminative person embeddings for the target domain.

2. Maintaining the discriminative ability of feature
learner. To provide beneficial knowledge for image translator,

feature learner has to maintain its discrimination ability.
Several techniques and issues are described below.

i) Pre-training the feature learner on the source dataset.
The feature learner adopts ResNet-50 [61] pre-trained on
ImageNet [62] as the backbone. We first fine-tune the feature
learner on the labeled source dataset S , such that it has
discriminative ability at the beginning of eSPGAN training.

ii) Real data regularization. There exist some poorly trans-
lated images, especially at the early epochs of eSPGAN
training. By “poorly translated image”, we mean two types
of images. First, the image translator fails to generate high-
quality images from the source to the target domain. Second,
the identity of a translated image is largely lost. These poorly
translated images are likely to be misclassified by feature
learner and produce relatively large losses. This might cause
the instability problem that affects the learning of eSPGAN.

To this end, We also use the source images when training
eSPGAN. In practice, besides the batch of translated source
images, we sample another batch of unaltered source images
for training the feature learner. This practice guarantees that
the feature learner will not be led to divergence by the poorly
translated images. Moreover, using both the source and the
translated images allows feature learner to learn domain
invariant person embeddings. Namely, the learned feature is
effective for both the source and target domains.

In late training epochs, the image translator has the
ability to improve the poorly translated images based on the
gradient computed by feature learner. Thus, the translated
images usually have high quality and largely preserve person
identities. At this stage, their effectiveness for learning
desirable feature at the target domain is understandable.

3. Different from other similarity-preserving methods.
There are some existing methods that also focus on the
similarity-preserving property of generated images [3], [63],
[64], [65]. For example, CYCADA [3] and Pose-transfer
[63] both propose to utilize a model that is pre-trained on
real images to preserve the semantics of generated images.
SP-AEN [64] uses pre-trained AlexNet [66] to preserve
perceptual information of an generated image. SRN [65] also
adopts pre-trained FaceNet model to maintain the identity
of the recovered face image. These existing methods all keep
the pre-trained model fixed, i.e., the parameters of the pre-
trained model are not updated during training. Under this
case, these methods can be viewed as the content loss [14] in
the style transfer.

Departing from these methods, we actually find that pre-
trained feature learner should be updated during training.
We speculate the reason is that pre-trained feature learner
only contains the semantic knowledge about the source
domain, and it is not effective in classifying target-style
images. As a consequence, a translated image might still
be mis-classified by the pre-trained model even if it has
successfully preserved its identity during translation.

In the person re-ID community, there are two end-to-end
methods [67], [68] for the low-resolution re-ID task. Our work
is inherently different from both works in several essential
aspects. First, in CSR-GAN [67], the loss of re-ID does not
influence the super-resolution network. In comparison, in
eSPGAN the re-ID model and the image translator are well-
aligned and have the impact on each other. Second, super-
solution network in SING [68] and image translator have the
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substantial difference in loss function and network structure.
For example, SING learns to do super resolution with ground
truths in the form of low-resolution and high-resolution
pairs. However, the image translator does not have paired
data, and it learns to map domains from data distributions
in an unsupervised manner. Thus, eSPGAN and SING [68]
have significant different working mechanisms, making them
completely different end-to-end systems.

4. eSPGAN vs. SPGAN. To understand the differences
between SPGAN and eSPGAN, we thoroughly compare them
in three aspects:

i) Network architecture. SPGAN only focuses on learning
an image translator, and the re-ID feature is separately
learned. In comparison, eSPGAN consists of both the image
translator and the re-ID feature learner and learns them
in an end-to-end manner. Thus, SPGAN is not end-to-end
trainable, but eSPGAN is.

ii) Working mechanism. Both aiming at similarity-
preserving image translation, SPGAN enforces this property
by two unsupervised heuristic constraints, while eSPGAN
does so by optimally facilitating the re-ID model learning.
eSPGAN seamlessly integrates image translation and re-ID
model learning, which allows us to gradually leverage the
knowledge of the two components to learn discriminative
embeddings for the target domain. In the experiment, we
also applied the two unsupervised heuristic constraints to
eSPGAN, but this does not bring any improvement.

iii) Training procedure. The alternative training proce-
dures of eSPGAN and SPGAN appear similar from a high-
level perspective. However, they use significantly different
loss functions and architectures, and as such their training
logistics are significantly different.

3.5 Local Max Pooling
After describing SPGAN (Section 3.2) and eSPGAN (Section
3.4), this article also introduces a useful technique for person
re-ID under the domain adaptation setting, named local max
pooling (LMP). LMP is not used in training; it works on a
well-trained re-ID model, and is used for feature extraction
of the query and gallery images. This method can reduce the
impact of noisy signals incurred by fake translated images.

Specifically, in the original ResNet-50, global average
pooling (GAP) is conducted on the last Convolution layer
(Conv5). In the LMP (Fig. 7), we first partition the Conv5
feature maps to P horizontal parts, and then conduct global
max pooling (GMP) or global average pooling (GAP) on each
part. Finally, we concatenate the output of GMP or GAP of
each horizontal part as the final feature representation. This
procedure is non-parametric, and can be directly used in
the testing phase. In the experiment, we will compare local
max pooling and local average pooling, and demonstrate the
superiority of the former. Moreover, we will show that LMP
is useful under the domain adaptation setting and does not
yield improvement under the normal setting where training
and testing are conducted on the same domain.

4 EXPERIMENTAL EVALUATION

4.1 Datasets
We evaluate the proposed methods on two large-scale
datasets, i.e., Market-1501 [43] and DukeMTMC-reID [69],

pooling

concat

conv5 feature maps

H/2×W×C

H/2×W×C

H×W×C

pooling

partition

1×1×C

1×1×C

1×1×2C

Fig. 7. Illustration of LMP. We partition the feature map into P (P = 2 in
this example) parts horizontally. We conduct global max/ average pooling
on each part and concatenate the resulting feature vectors as the final
representation.

Market images to Duke styleMarket images 

Duke images to Market styleDuke images 

Fig. 8. Sample images of (upper left:) DukeMTMC-reID dataset, (lower
left:) Market-1501 dataset, (upper right:) Duke images which are trans-
lated to Market style, and (lower right:) Market images translated to
Duke style. We use SPGAN for the source-target image translation. We
observe that image resolution, illumination, color, and background are
changed. Best viewed in color.

and investigate the components of our methods in details.
DukeMTMC-reID consists of 34,183 bounding boxes of

1,404 identities. There are 16,522 images from 702 identities
for training, 2,228 query images from another 702 identities
and 17,661 gallery images for testing. Each identity is
captured by at most 8 cameras. DukeMTMC-reID is denoted
as Duke for short.

Market-1501 contains 12,936 training images and 19,732
gallery images (with 2,793 distractors) detected by DPM [70].
It is split into 751 identities for training and 750 identities for
testing. There are 3,368 hand-drawn bounding boxes from
the 750 identities used as queries. Each identity is captured
by at most 6 cameras. We also denote Market-1501 as Market
for short. Sample images of two datasets are shown in Fig. 8.

Evaluation protocol. We adopt rank-1 accuracy for re-
ID evaluation, which counts the percentage of queries that
successfully retrieve a true match at rank 1. Besides, since
multiple true positives should be returned for each query
bounding box, we adopt the mean average precision (mAP)
for re-ID evaluation. For Market and Duke, we use the
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evaluation packages provided by the [43] and [69]. If not
specified, the re-ID results in this paper are reported under
the single-query setting.

4.2 Implementation Details

Feature learning method. To learn the re-ID model, we
adopt IDE+ [52] as the feature learning method. For IDE+,
we employ the training strategy in [60]. We adopt ResNet-50
[61] pre-trained on ImageNet [62] as the backbone network.
All the images are resized to 256 × 128. During training,
we adopt random flipping and random cropping as data
augmentation methods. Dropout probability is set to 0.5.
The initial learning rate is set to 0.001 for the layers in the
backbone network, and to 0.01 for the remaining layers. The
learning rate is decayed by 10 after 40 epochs. We use mini-
batch SGD to train IDE+ on a Tesla K80 GPU in a total of 60
epochs. Training parameters such as batch size, momentum,
and gamma are set to 16, 0.9, and 0.1, respectively. We do not
fine-tune the batch normalization [71] layers. During testing,
given an input image, we extract the 2,048-dim Pool5 vector
for retrieval under the Euclidean distance.

SPGAN training and testing. SPGAN consists of Cycle-
GAN and SiaNet. For CycleGAN, we adopt the architecture
released by its authors [8]. We use instance normalization [72]
for generators but no normalization for the discriminators.
For SiaNet, it contains 3 convolutional layers, 3 max pooling
layers and 2 fully connected (FC) layers, configured as below.
(1) Conv. 4×4, stride = 2, #feature maps = 64; (2) Max pooling
2× 2, stride = 2; (3) Conv. 4× 4, stride = 2, #feature maps =
128; (4) Max pooling 2× 2, stride = 2; (5) Conv. 4× 4, stride
= 2, feature maps = 256; (6) Max pool 2 × 2, stride = 2; (7)
Max pooling 2 × 2, stride = 2; (8) FC, output dimension =
256; 9) FC, output dimension = 128.

SPGAN is an unsupervised method, i.e., we do not use
any ID annotation during the training. In all experiment, we
empirically set β = 5, γ = 2 in Eq. 4, m = 2 in Eq. 3, and
α = 10 in Eq. 1. The input images are resized to 256× 128.
During training, two data augmentation methods, random
flipping and random cropping, are employed. We use the
Adam optimizer [73] with a batch size of 1, and the β1 and
β2 are set to 0.5 and 0.999, respectively. The initial learning
rate is 0.0002, and we stop training after 6 epochs. During
testing, we employ the Generator G for the source (Market)
→ target (Duke) image translation and the Generator F for
the target (Duke)→ source (Market) image translation.

With translated images, we use three strategies to learn a
re-ID model: (1) using translated images as training data; (2)
using original images and translated images as training data;
(3) using translated images to fine-tune the model trained on
source images. The results of the three methods are nearly
the same, and we adopt the third one to train re-ID models
in all the experiment.

eSPGAN training and testing. eSPGAN consists of two
models: an image translator and a feature learner. In this
paper, we adopt CycleGAN as the image translator and IDE+
as the feature learner, and follow their original architectures.
The input images are all resized to 256 × 128. Besides, the
feature learner is pre-trained on the source dataset following
the above setting of feature learning method. During the
training eSPGAN, we use two data augmentations: random

flipping and random cropping. We set the batch size to 16.
For image translator, we use Adam optimizer. The learning
rate is 0.0001 at the first 10 epochs and linearly decays to 0
in the remaining 5 epochs. For feature learner, we use mini-
batch SGD in a total of 15 epochs. The initial learning rate is
set to 0.001 for the layers in the backbone network, and to
0.01 for the remaining layers. The learning rate is decayed
by 10 after 10 epochs. For all the experiment, we set hyper-
parameters following CycleGAN for simplicity. Besides, we
set the λ = 5 in Eq. 7. Note that the image translator
(CycleGAN) and the feature learner (IDE+) are trained
end-to-end, so they share the same image preprocessing
procedure. Specifically, we normalize the image with the
same mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5)
for both the image translator and the feature learner. At the
test time, the re-ID model produced by the feature learner is
directly used for the target dataset.

4.3 Baseline Evaluation
In this section, we evaluate the direct transfer method and
the “learning via translation” baseline.

Dataset bias in re-ID. To demonstrate the influence of
the dataset bias, we report the results of the supervised
learning method and the direct transfer method in Table 1.
The supervised learning method is trained and tested on
the same domain, which defines the upper bound of our
system. In the direct transfer, we train a re-ID model on the
source domain and directly deploy the resulting model on
the target domain without any domain adaptation technique.
We clearly observe a large performance drop when directly
using a source-trained model on the target domain. For
example, the IDE+ model trained and tested on Market
achieves a rank-1 accuracy of 85.1%, but drops to 48.1%
when trained on Duke and tested on Market. A similar drop
can be observed when Duke is used as the target domain,
which is consistent with the experiment reported in [1]. The
reason behind the performance drop is the large difference
between data distributions in different domains.

Effectiveness of the “learning via translation” baseline.
We use CycleGAN as the baseline for source-target image
translation. It is worth noting that CycleGAN does not
involve any identity-preserving technique. As shown in Table
1, the baseline effectively improves over the direct transfer
method on the target dataset. For example, comparing with
the direct transfer, the CycleGAN baseline gains +3.5%
improvement in rank-1 accuracy on Market.

Moreover, when we adopt the inside-domain identity
loss in CycleGAN, we observe some further improvement.
When tested on Duke and Market, the rank-1 accuracy gains
brought by adding the identity loss are +2.3% and +1.4%, re-
spectively. We speculate that the inside-domain identity loss
constrains the mapping functions, such that some original
semantics are preserved in the translated images. To some
extent, the effectiveness of the inside-domain identity loss
suggests the necessity of preserving image content. Overall,
considering the results of the baselines using CycleGAN
and CycleGAN + inside-domain identity loss, we conclude
that the “learning via translation” baseline is effective in
domain adaptation. However, comparing with SPGAN and
eSPGAN, its effectiveness is limited without learning the
identity-preserving property.
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TABLE 1
Comparison of various methods on the target domains. When tested on Duke, Market is used as the source dataset, and vice versa. “Supervised
Learning” denotes using labeled training images on the corresponding target dataset. “Direct Transfer” means directly applying the source-trained
model on the target domain. “Direct Transfer (ColorJitter)” means using images of randomly increased/decreased brightness, contrast, and saturation

during training. When local max pooling (LMP) is applied, the number of parts is set to 8. We use IDE + [52] for feature learning.

Methods DukeMTMC-reID Market-1501
rank-1 rank-5 rank-10 rank-20 mAP rank-1 rank-5 rank-10 rank-20 mAP

Supervised Learning 76.5 87.5 91.1 93.6 58.9 85.1 94.4 96.6 97.8 66.3
Direct Transfer 38.4 54.3 61.0 66.1 22.0 48.1 66.3 73.1 79.0 21.2
Direct Transfer (ColorJitter) 41.0 56.4 63.0 67.5 23.0 51.0 67.6 73.5 80.5 22.1
CycleGAN (basel.) 40.2 56.7 62.8 68.2 22.4 51.6 68.1 75.8 81.5 22.3
CycleGAN (basel.) + Lide 42.5 58.5 64.3 69.3 23.1 53.0 70.2 77.6 82.4 23.5
SPGAN (m = 2) 44.3 61.2 66.0 71.1 24.6 54.6 72.4 79.7 84.2 25.1
SPGAN (m = 2) + LMP 47.1 63.8 70.0 74.2 26.1 57.2 74.0 82.1 86.4 27.4
eSPGAN 47.9 61.9 67.1 73.2 26.1 59.5 76.0 82.2 88.2 28.9
eSPGAN+ LMP 52.6 66.3 71.7 76.2 30.4 63.6 80.1 86.1 90.1 31.7

Style change. Our methods perform distribution align-
ment in raw pixel space - translating source data to the
“style of a target domain. The “style change is complex and
abstract; it involves many various factors. For example, from
the visual examples in Fig. 4 and Fig. 8, we observe that
resolution, illumination, color, and background are changed,
as well as other changes that are harder to describe.

We provide a quantitative analysis of changes in two
example visual factors: illumination and color. In Fig. 9, we
visualize channel-wise histograms of translation examples
in the LAB color space. We choose the LAB color space
because it relates closely to how human vision works [74]. We
observe all methods introduce a distribution shift of the “L
channel (the distribution moves towards left), making more
areas of image dark. Moreover, all the compared methods
introduce the distribution shifts in “A and “B channels, too.
These shifts correspond to the color composition changes.
For example, CycleGAN introduces the largest distribution
shifts in channels “A and “B; it changes the color from blue
to red. The histogram shifts in the LAB space demonstrate
that both illumination and color composition are the changed
factors introduced by image translation.

To further study the impact of illumination, we have
newly added a data augmentation method (“colorjitter) to the
direct transfer baseline. “Colorjitter uses images of randomly
increased/decreased brightness, contrast, and saturation. As
shown in Table 1, “colorjitter augmentation brings about
some improvement over the direct transfer baseline. This
indicates illumination is a factor that causes the dataset bias
between Duke and Market. However, even with “colorjitter,
the direct transfer baseline is still lower than CycleGAN
+ Lide, SPGAN and eSPGAN. It means that considering
only the illumination during image translation is insufficient.
More importantly, it suggests that manually designing how
certain factors should be changed is not optimal. In fact,
SPGAN and eSPGAN not only consider multiple factors
(e.g., color composition, background, and some indescribable
ones), but also change them in an automatic manner, which
is much more effective than manually designed changes.

In addition, the “style is an abstract and comprehensive
notion, and it is non-trivial to list and define all the related
factors. Thus, we cannot manually specify certain factor
changes for the image translator to learn. In comparison, our
GAN-based method looks at the global data distribution,

L A B

(a)

(b)

(c)

(d)

(e)

Fig. 9. Global histograms of images in LAB color space. From top to
bottom: (a) original image, outputs of (b) CycleGAN, (c) CycleGAN + Lide,
(d) SPGAN and (e) eSPGAN, respectively. The LAB space expresses
color with three values: L∗ for the luminance from black (0) to white (1),
A∗ from green (-1) to red (+1), and B∗ from blue (-1) to yellow (+1). The
histogram shifts in three channels demonstrate that illumination and color
composition are the changed factors introduced by image translation.

such that image style is optimized/changed automatically.

4.4 Evaluation of SPGAN
On top of the “learning via translation” baseline, we replace
CycleGAN with SPGAN and leave the feature learning
component unchanged. In this section, we present a step-by-
step evaluation and analysis of SPGAN.

SPGAN effect. On top of the “learning via translation”
baseline, we replace CycleGAN with SPGAN (m = 2). The
effectiveness of the proposed similarity preserving constraint
can be seen in Table 1. On Duke, the similarity preserving
constraint leads to +1.8% and +1.5% improvements over
CycleGAN + Lide in rank-1 accuracy and mAP, respectively.
On Market, the performance gains are +1.6% and 1.6%.
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Fig. 10. The impact of the hyper-parameters of SPGAN on the re-ID
rank1 accuracy. (a): the impact of m in Eq. 3, a larger m means that the
loss of negative training samples has a higher weight in back-propagation.
(b): the impact of γ in Eq. 4, a larger γ means a larger weight of similarity
preserving constraint. The results are on Market.
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Fig. 11. Domain adaptation performance with different feature learning
methods, including IDE+ [52], SVDNet [75], PCB [55]. Three domain
adaptation methods are compared, i.e., direct transfer, CycleGAN with
identity loss, and the proposed SPGAN. The results are on Market.

The working mechanism of SPGAN consists in preserving
the underlying visual cues associated with the ID labels.
The consistent improvement suggests that this working
mechanism is critical for generating suitable samples for
training re-ID models in the target domain. Examples of
translated images by SPGAN are shown in Fig. 8.

Sensitivity of SPGAN to key hyper-parameters. SP-
GAN has two parameters that affect the re-ID accuracy, i.e.,
m in Eq. 3 and γ in Eq. 4. We conduct the experiment to
analyze the impact of the m and γ on Market, and results
are shown in Fig. 10.

First, m ∈ [0, 2] is the margin that defines the separability
of negative pairs in the embedding space. If m = 0, the loss
of the negative pairs is not back-propagated. If m gets larger,
the weight of negative pairs in loss calculation increases.
When turning off the contribution of negative pairs (m = 0),
SPGAN only marginally improves the accuracy on Market.
When increasing m to 2, we have much superior accuracy. It
indicates that the negative pairs are critical to the system.

Second, γ controls the relative importance of the proposed
similarity preserving constraint. As shown in Fig. 10 (b), the
proposed constraint is proven effective when compared to
γ = 0, but a larger γ does not bring more gains in re-ID
accuracy. Specifically, γ = 2 yields the best accuracy.

Comparison of different feature learning methods.
Given the same translated images, we evaluate three feature
learning methods, i.e., IDE+ [52], SVDNet [75], PCB [55].
We choose Market as the target dataset and duke as the
source dataset, and results are shown in Fig. 11. Under the
domain adaptation setting, we observe that better feature

TABLE 2
Comparision of eSPGAN and Naı̈ve eSPGAN on Market and Duke

datasets. Rank-1 accuracy (%) and mAP (%) are shown.

Methods DukeMTMC-reID Market-1501
Rank-1 mAP Rank-1 mAP

CycleGAN + Lide 42.5 23.1 53.0 23.5
Naı̈ve eSPGAN 44.3 24.4 55.1 24.9
eSPGAN 47.9 26.1 59.5 28.9
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Fig. 12. Sensitivity of eSPGAN to key parameter λ in Eq. 7. A larger
λ means that the feature learner has a greater influence on the image
translator. The results are on Market.

learning methods lead to higher direct transfer results. For
example, PCB achieves higher accuracy than IDE+ under the
supervised setting on Market (92.3% vs. 85.1%), and its direct
transfer accuracy is also higher than that of IDE+ (54.2% vs.
48.1%). As shown in Fig. 11, the SPGAN gains consistent
improvement with three different feature learning methods.
Compared with the very high direct transfer accuracy (54.2%)
of PCB, the “learning via translation” framework baseline
(CycleGAN + Lide) gains +2.2% improvement, and the
SPGAN gains +3.0% improvement.

4.5 Evaluation of eSPGAN

eSPGAN effect. An evaluation of eSPGAN is shown in Table
1. eSPGAN adopts CycleGAN + Lide as the image translator.
Compared with CycleGAN + Lide, eSPGAN further gains
+6.5 % in rank-1 accuracy on the Market dataset. We also
observe the significant improvement on Duke dataset, the
rank-1 accuracy increases from 42.5% to 47.9%. Moreover,
eSPGAN greatly improves the performance of direct transfer,
the rank-1 accuracy on Market and Duke increases from
48.1% and 38.4% to 59.5% and 47.9%, respectively. The
experimental results strongly indicate that eSPGAN can
effectively leverage the knowledge of image translation and
feature learner to learn more discriminative embeddings
for the target domain. Examples of translated images by
eSPGAN are shown in Fig. 4.

Naı̈ve eSPGAN. By this we mean that the parameters of
feature learner will not be updated during training. Thus, the
image translator naı̈vely utilizes a pre-trained source model
to guide its translation procedure. Note that Naı̈ve eSPGAN
only aims to learn an image translator. As analyzed in Section
3.4.2, many existing methods adopt this way to preserve
the similarity of the generated image [3], [63], [64], [65]. In
Table 2, we compare eSPGAN with Naı̈ve eSPGAN. We can
observe that Naı̈ve eSPGAN can improve the accuracy of the
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TABLE 3
Performance of eSPGAN after source-target adaptation on the source

dataset. Rank-1 accuracy (%) and mAP (%) are shown.

Methods DukeMTMC-reID Market-1501
Rank-1 mAP Rank-1 mAP

Supervised Learning 76.5 58.9 85.1 66.3
eSPGAN 76.1 57.7 84.6 65.4
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Fig. 13. eSPGAN performance with different feature learning methods,
including IDE+ [52], PCB [55]. Three domain adaptation methods are
compared, i.e., direct transfer, CycleGAN with identity loss, and eSPGAN.
The results are on Market.

baseline (CycleGAN + Lide). However, the accuracy of Naı̈ve
eSPGAN is still much lower than eSPGAN. For example,
eSPGAN obtains a much higher rank-1 accuracy than Naı̈ve
eSPGAN (47.9% vs. 44.3%) on Duke. This suggests that the
parameters of pre-trained feature learner should be updated
during training, so that the knowledge of feature learner and
image translator can be gradually transferred to each other.

Analysis of the hyper-parameter of eSPGAN. λ in Eq.
7 is an important parameter of eSPGAN, which defines the
influence of the feature learner on the image translator. To
further analyze the effect of λ, we vary it from 0.1 to 20 to
evaluate the performance of eSPGAN on Market. The rank-1
accuracies when using different λ are plotted in Fig. 12. In
our system, when the λ is set to 5, we can obtain the best
re-ID accuracy. Note that setting the λ to 0 means the feature
learner has no influence on the image translator.

Analysis of the different forms of the feature learner.
eSPGAN consists of an image translator and a feature learner.
The feature learner is crucial for the image translator to
generate similarity-preserving images, i.e., the translated
image maintains its visual contents that associated with the
identity information. We analyze two forms of the feature
learner, i.e., IDE+ [52], PCB [55]. We choose Market as the
target dataset and duke as the source dataset and report
results in Fig. 13. Under the domain adaptation setting,
we observe that eSPGAN gains consistent improvement
with two feature learning methods. For example, when
using PCB as feature learning method, eSPGAN gains +4.8%
improvement over the CycleGAN + Lide.

Domain invariant person embeddings. As discussed
in Section 3.4.2, we also use source images when training
eSPGAN. This practice ensures feature learner will not be led
to divergence by the poorly translated images. In addition,
using both source and translated images for feature learning
leads to domain invariant person embeddings. To validate
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Fig. 14. The experiment of LMP (P = 8) on scenarios of supervised
learning and domain adaptation with SPGAN and eSPGAN. Two feature
learning methods are compared, i.e., IDE+ [52], and PCB [55]. The
results are on Market.

this, We also report the accuracy of eSPGAN after source-
target adaptation on the source dataset in Table 3. We observe
eSPGAN slightly decreases the rank-1 accuracy on the source
dataset after source-target adaptation. Moreover, compared
with the direct transfer baseline, eSPGAN significantly im-
proves the performance on the target dataset. Thus, eSPGAN
can learn person embeddings that are effective for both the
source and target datasets.

Impact of two heuristic constraints. We further investi-
gate the impact of two heuristic constraints of SPGAN on
eSPGAN. We add the two heuristic constraints to eSPGAN
during training, and report results in Table 4. We can
observe that two heuristic constraints do not improve the
performance of eSPGAN. This is because the feature learner
provides the sufficiently informative and accurate constraint
for the image translator. Thus, eSPGAN does not adopt two
heuristic constraints during training.

Local max pooling. We apply the LMP on the last
convolution layer of a re-ID model to mitigate the influence
of noise. Note that LMP is directly adopted in the feature
extraction step for testing without any fine-tuning. In Table 1,
we can observe that LMP (P=8) can improve the accuracy of
SPGAN and eSPGAN. With the help of LMP (P=8), SPGAN
obtains +2.6% improvement on Market in rank-1 accuracy.
LMP also improves the rank-1 accuracy of eSPGAN from
59.5% to 63.6% on Market. We empirically study how the
number of parts and the pooling mode affect the accuracy.
The experiment is conducted on eSPGAN. The performance
of various numbers of parts (P = 1, 2, 4, 8) and different
pooling modes (max or average) is provided in Table 5. When
using average pooling and P = 1, we have the original GAP
used in ResNet-50. From these results, we speculate that with
more parts, a finer partition leads to higher discriminative
descriptors and thus higher re-ID accuracy.

Moreover, we test LMP on supervised learning and
domain adaptation scenarios with two feature learning
methods, i.e., IDE+ [52] and PCB [55]. As shown in Fig. 14,
LMP does not guarantee stable improvement on supervised
learning as observed in “IDE+” and PCB. However, when
applied in the scenario of domain adaptation, LMP yields
consistent improvement over IDE+ and PCB. We believe that
the superiority of LMP probably lies in that it could filter
out some detrimental signals in the descriptor induced by
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TABLE 4
Impact of two heuristic constraints on eSPGAN. Rank-1 accuracy (%)

and mAP (%) are shown.

Training w/
heuristic constraints?

DukeMTMC-reID Market-1501
Rank-1 mAP Rank-1 mAP

eSPGAN 47.9 26.1 59.5 28.9
eSPGAN X 47.5 26.2 59.6 28.6

TABLE 5
Performance of various pooling strategies with different numbers of parts

(P ) and pooling modes (maximum or average) over eSPGAN.

#parts mode dim DukeMTMC-reID Market-1501
rank-1 mAP rank-1 mAP

1 Avg 2048 47.9 26.1 59.5 28.9
Max 50.7 28.1 62.6 30.2

2 Avg 4096 50.1 27.6 61.3 29.8
Max 51.9 28.5 62.9 30.5

4 Avg 8192 50.1 28.0 62.5 30.1
Max 52.4 29.0 63.2 30.9

8 Avg 16384 51.5 28.9 63.2 31.0
Max 52.6 29.6 63.6 31.7

unsatisfied translated images.

4.6 Comparison with State-of-the-art Methods

Finally, we compare SPGAN and eSPGAN with the state-of-
the-art unsupervised learning methods on Market and Duke
in Table 6 and Table 7, respectively.

Market as the target domain. On Market, we first com-
pare the proposed methods with two hand-crafted features,
i.e., bag-of-Words (BoW) [43] and local maximal occurrence
(LOMO) [42]. These two hand-crafted features are directly
applied to the target dataset without any training process,
their inferiority can be clearly observed. We also compare
with existing unsupervised learning methods, including
the clustering-based asymmetric metric learning (CAMEL)
[46], the Progressive Unsupervised Learning (PUL) [1], and
UMDL [47]. For UMDL, we use the results reproduced by Fan
et al. [1]. Moreover, we compare the proposed methods with
recent domain adaptation methods of re-ID, i.e., PTGAN
[54], TJ-AIDL [48], and HHL [53]. In the multiple-query
setting, SPGAN and eSPGAN arrive at rank-1 accuracy =
58.0% and 63.5%, respectively. The accuracy of SPGAN is
3.5% higher than CAMEL [46]. In the single-query setting,
SPGAN achieves 54.6% in rank-1 accuracy, and eSPGAN
achieves 59.5%. We can observe that SPGAN outperforms
many other methods. With the help of LMP (P=8), SPGAN
is comparable with recent work TJ-AIDL [48]. Moreover,
eSPGAN outperforms TJ-AIDL [48] by 1.3%, which indicates
that it is beneficial to jointly optimize feature learner and
image translator. With the help of LMP (P=8), eSPGAN
achieves a new state-of-the-art rank-1 accuracy=63.6%, which
is 1.4% higher than the second best method HHL [53]. The
comparisons indicate the competitiveness of SPGAN and
eSPGAN on Market.

Duke as the target domain. On Duke, we compare the
results with BoW [43], LOMO [42], UMDL [47], and PUL [1]
under the single-query setting (there is no multiple-query
setting in DukeMTMC-reID). We also compare with recent

TABLE 6
Comparison with the state-of-the-art methods on Market. “SQ” and “MQ”

are the single-query and multiple-query settings, respectively.

Methods Market-1501
Setting Rank-1 Rank-5 Rank-10 mAP

Bow [43] SQ 35.8 52.4 60.3 14.8
LOMO [42] SQ 27.2 41.6 49.1 8.0
UMDL [47] SQ 34.5 52.6 59.6 12.4
PUL [1] SQ 45.5 60.7 66.7 20.5
Direct transfer SQ 48.1 66.3 73.1 21.2
Direct transfer MQ 52.3 70.1 77.2 25.0
CAMEL [46] MQ 54.5 - - 26.3
TJ-AIDL [48] SQ 58.2 74.8 81.1 26.5
PTGAN [54] SQ 38.6 - 66.1 -
HHL [53] SQ 62.2 78.8 84.0 31.4
SPGAN SQ 54.6 71.4 79.1 25.1
SPGAN MQ 58.0 74.7 83.2 29.6
SPGAN+LMP SQ 57.2 74.0 82.1 27.4
eSPGAN SQ 59.5 76.0 82.2 28.9
eSPGAN MQ 63.5 81.1 87.3 34.5
eSPGAN+LMP SQ 63.6 80.1 86.1 31.7

TABLE 7
Comparison with the state-of-the-art methods on Duke under the

single-query setting.

Methods DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP

Bow [43] 17.1 28.8 34.9 8.3
LOMO [42] 12.3 21.3 26.6 4.8
UMDL [47] 18.5 31.4 37.6 7.3
Direct transfer 38.4 54.3 61.0 22.0
PUL [1] 30.0 43.4 48.5 16.4
PTGAN [54] 27.4 - 50.7 -
TJ-AIDL [48] 44.3 59.6 65.0 23.0
HHL [53] 46.9 61.0 66.7 27.2
SPGAN 44.3 61.2 66.0 24.6
SPGAN+LMP 47.1 63.8 70.0 26.1
eSPGAN 47.9 61.9 67.1 26.1
eSPGAN+LMP 52.6 66.3 71.7 29.6

domain adaptation methods of re-ID, i.e., PTGAN [54], TJ-
AIDL [48], and HHL [53]. The result obtained by SPGAN is
rank-1 accuracy = 44.3%, mAP = 24.6%, which is competitive
with the recent work TJ-AIDL [48]. With the help of LMP
(P=8), SPGAN is comparable with HHL [53]. Moreover, eSP-
GAN gains rank-1 accuracy=47.9%, which is +1% higher than
HHL [53]. With the help of LMP (P=8), eSPGAN achieves a
new state-of-the-art rank-1 accuracy=52.6%. Therefore, the
superiority of SPGAN and eSPGAN can be concluded.

5 CONCLUSION

This paper focuses on domain adaptation in person re-ID.
When models trained on one dataset are directly transferred
to another dataset, the re-ID accuracy drops dramatically
due to dataset bias. To achieve improved performance in
the new dataset, we present a “learning via translation”
framework characterized by 1) unsupervised image-image
translation and 2) supervised feature learning. We propose
that the underlying (latent) ID information for the foreground
pedestrian should be preserved after image-image translation.
To meet this requirement tailored for re-ID, we propose a
similarity preserving generative adversarial network (SP-
GAN) and its upgraded version, eSPGAN. Both aiming
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at similarity preserving, SPGAN enforces this property by
heuristic constraints, while eSPGAN does so by leveraging
the discriminative knowledge of the re-ID model. We show
that SPGAN and eSPGAN better qualify the generated
images for domain adaptation and achieve state-of-the-art
results on two large-scale person re-ID datasets. In the future,
we plan to further study the relation between generative and
discriminative learning, and improve our method for more
general applications in visual understanding.
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