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€ An attempt to interpret CNN @ SVD helps understanding CNN

@ Train CNN like educating children

» An interpretation of CNN weight vectors: we view » SVD says Yes to the question: Once CNN learns a set of » Restraint and Relaxation Iteration training
each weight vector within a layer as a projection projection basis, i.e., weight vectors for a certain layer, Algorithm 1: Training SVDNat
basis, as well as an exemplar in the embedded yvhich projection dﬁrection doe.s CNN consider most Tnput: upre—lmined.CNN model, re 1D training data.
feature space of input layer. important? Can this set of weight vectors be replaced by an 0. Add the Eigenlayer and fine-tune the network.
orthogonal weight matrix with the learned discriminative fort — 1toT do
ability maintained? 1. Decorrelation: Decompose W with SVD
7)

» Motivation: correlation among weight vectors
indicates redundancy between exemplars, and may
compromise the learned feature representation for
pedestrian retrieval (as well as for some other tasks).
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N o . decomposition, and then update it: W « US
Dij =lfi - f]”Z = (f 2. Restraint: Fine-tune the network with the
Eigenlayer fixed
3. Relaxation: Fine-tune the network with the
Eigenlayer unfixed
end
Output: a fine-tuned CNN model, Le., SVDNel.
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» Decorrelated weight vectors, dissimilar exemplars

a) Images maximumly activating 5 similar neurons
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“increase — stagnate” echoing “Restraint — Relaxation”.
When educating children, a similar rhythm is encouraged!
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buckbone model o ¢) Images maximumly activating neurons after our method ‘ " l
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— o — '0' » Why are PCA and other decorrelating methods inferior?
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Input image i et Tast layer o important P1 projection
ure output feature direction.
> SVDNet contains an Eigenlayer before the last FC layer VD wi (8) CaffeNet backhoned SVDNet 1) ResKeBackboned SYDNet
. » Higher performance is achieved with data augmentation, e.g.,
of the backbone model. The weight vectors of the_ 87% Rank-1 on market-1501
E_|genlayer gre expect'ed to be orthogonal. .In testing, Methods [ Orig | US | U [UVT [ QD Other methods degrade » SVDNet may be extended to some other computer vision tasks.
either the Eigenlayer input feature or the Eigenlayer rank-1 636 | 636 | 61.7 | 61.7 | 61.6 SVDNet based on resnet-20 achieves 93.5% (+1.7%) top-1

the performance.

output feature is employed for retrieval. mAP 390 | 390 [ 371 ] 371 | 373 accuracy on Cifar-10 dataset.




