

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?

Weijian Deng Stephen Gould Liang Zheng Australian National University

Pillars in machine learning

Is evaluation feasible?

Labelled test set \rightarrow *Ground truths are provided*

ImageNet

MSCOCO

Is evaluation feasible?

• No

Unlabeled test images \rightarrow *Ground truths are not provided*

We encounter this problem many times

- Deploy face recognition model in an airport
- Deploy a 3D object detection system to a new city

• .

We can't quantitatively measure the model accuracy like we usually do!

We need to **annotate** the test data When the testing environment is changed, we need to **annotate again**

Self-supervision for unsupervised classifier evaluation

Given

- A training dataset
- A classifier trained on this dataset
- A test set without labels

We want to *estimate*:

accuracy on the unlabelled test set

Deng, Weijian, and Liang Zheng. "Are Labels Necessary for Classifier Accuracy Evaluation?", In CVPR, 2021

Self-supervision for unsupervised classifier evaluation

multi-task network structure

The self- supervised task should

- introduce no learning complexity for the main classification;
- 2) require minimal structure change;
- not degrade classification accuracy

rotation prediction

Motivation

Motivation

Rotation prediction is self-supervised:

we can obtain its rotation labels freely and

calculate its accuracy on any test set

If <u>rotation prediction accuracy</u> is correlated with semantic classification accuracy,

then we can predict the <u>classifier performance</u> from <u>the accuracy of rotation prediction</u>

Correlation study

- 1. We collect many test sets from different distributions
- 2. Test our multi-task network on them and obtain
 a) sematic classification accuracy
 b) rotation prediction accuracy
- 3. Measure accuracy relationship between two types of tasks

Correlation study: how can we have many datasets?

• Using image transformations

original set

original set

COCO setup

MNIST setup

Correlation study: how can we have many datasets?

• Using image transformations

COCO setup

MNIST setup

Correlation study: how to obtain accuracy?

Labels of the synthetic sets are inherited from the original set

Correlation study on three setups

we consistently observe a **strong linear relationship** (*Pearson Correlation r > 0.88*) between the accuracy of two tasks

Correlation study on three setups

If the multi-task **network is good at predicting rotations**, it is most likely to **achieve good object recognition accuracy** under the same environment, and vice versa

Correlation study with different backbones

CIFAR-10 Setup

	VGG11	VGG19	ResNet26	ResNet44	Dense40
Class. Acc.	92.53	92.51	92.84	93.73	94.75
Rot. Acc.	91.32	92.07	87.84	88.81	91.28
Cor. (r)	0.990	0.987	0.975	0.981	0.981

The strong linear correlation is maintained when using different backbones.

Correlation when the number of classes is large

CIFAR-100 Setup

Backbone	CIFAR-10		CIFAR-100	
	Cor. (r)	Cor. (r)	Class Acc.	Rot. Acc.
ResNet26	0.975	0.918	69.31	73.18
ResNet44	0.981	0.910	71.38	75.60
Dense40	0.981	0.950	74.55	75.20

Correlation when the number of classes is large

Tiny-ImageNet (200 classes)

When the number of categories is huge (*e.g.*, 10K (Deng et al., 2010)), the correlation might decrease but it will still have a high value.

Our solution for accuracy estimation: linear regression

• Method:

Predict classifier performance from rotation prediction accuracy

We thus can use linear regression to predict accuracy

$$a^{cls} = w_1 a^{rot} + w_0,$$

where $w_1, w_0 \in \mathbb{R}$ are linear regression parameters

Experiment on accuracy estimation

Settings	Training set	Seed set	Test sets
MNIST	MNIST	MNIST test set	SVHN and USPS
	training set		
СОСО	СОСО	COCO	PASCAL, ImageNet,
	training set	validation set	and Caltech
CIFAR-10	CIFAR-10	CIFAR-10	CIFAR10.1
	training set	test set	(a new test set)

We use root mean squared error (RMSE) to evaluate the accuracy prediction

Experiment on accuracy estimation

Train Set	MNIST		CIFAR-10		COCO				
Unseen Test Set	SVHN	USPS	RMSE↓	CIFAR-10.1	RMSE↓	Caltech	Pascal	ImageNet	RMSE↓
Ground-truth Accuracy	23.06	65.52	-	88.15	-	92.61	86.43	87.83	-
Prediction ($\tau_1 = 0.8$)	33.64	44.34	16.74	91.15	3.00	89.36	83.98	85.17	2.81
Prediction ($\tau_1 = 0.9$)	22.07	30.39	24.85	86.85	1.30	84.30	78.00	79.83	8.25
Entropy ($\tau_2 = 0.2$)	26.63	33.23	22.97	89.20	1.05	86.80	80.14	82.50	5.82
Entropy ($\tau_2 = 0.3$)	40.35	46.87	17.98	93.80	5.65	92.49	86.21	88.50	0.41

"Predicted Score" and "Entropy Score": two intuitive pseudo label methods

If the maximum value of the softmax outputs (Predicted Score) is greater than τ_1 , we view this sample as correctly classified.

If the entropy value of the softmax outputs (entropy Score) is lower than τ_2 , we view this sample as correctly classified.

Experiment on accuracy estimation

Train Set	MNIST		CIFAR-10		COCO				
Unseen Test Set	SVHN	USPS	RMSE↓	CIFAR-10.1	RMSE↓	Caltech	Pascal	ImageNet	RMSE↓
Ground-truth Accuracy	23.06	65.52	-	88.15	-	92.61	86.43	87.83	-
Prediction ($\tau_1 = 0.8$)	33.64	44.34	16.74	91.15	3.00	89.36	83.98	85.17	2.81
Prediction ($\tau_1 = 0.9$)	22.07	30.39	24.85	86.85	1.30	84.30	78.00	79.83	8.25
Entropy ($\tau_2 = 0.2$)	26.63	33.23	22.97	89.20	1.05	86.80	80.14	82.50	5.82
Entropy ($\tau_2 = 0.3$)	40.35	46.87	17.98	93.80	5.65	92.49	86.21	88.50	0.41
Linear Regression	24.84	53.10	8.87	91.89	3.74	90.70	89.29	90.98	2.68

Linear regression achieves reasonably good estimations on all test sets

Test sets undergo new transformations

We add new image transformations to the test sets of COCO setup

Random erasing, Posterize \rightarrow Group A

Pepper and FilterSmooth \rightarrow Group B

robust

More test sets under COCO setup

• We include more test sets to validate the generalization of regression model

generalizable

Conclusions and insights

• We study a very interesting problem:

Evaluating model performance *without* ground truths

• We use a very simple method:

Using accuracy of rotation prediction to

estimate semantic classification accuracy

Conclusions and insights

- Limitation
 - Some corner cases (e.g., balls and airplanes)
 - Rotation prediction should be well-defined and non-trivial
- Future Work
 - Use our correlation finding to select models without labels
 - Other machine learning tasks (e.g., object detection)

Thank you!

The code is available at https://weijiandeng.xyz

