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Abstract—Understandingmodel decision under novel test scenarios is central to the community. A common practice is evaluatingmodels

on labeled test sets. However, many real-world scenarios see unlabeled test data, rendering the common supervised evaluation protocols

infeasible. In this paper, we investigate such an important but under-explored problem, named Automaticmodel Evaluation (AutoEval).

Specifically, given a trained classifier, we aim to estimate its accuracy on various unlabeled test datasets.We construct a meta-dataset:

a dataset comprised of datasets (sample sets) created from original images via various transformations such as rotation and background

substitution. Correlation studies on themeta-dataset show that classifier accuracy exhibits a strong negative linear relationship with

distribution shift (Pearson’s Correlation r < �0:88). This new finding inspires us to formulate AutoEval as a dataset-level regression

problem. Specifically, we learn regressionmodels (e.g., a regression neural network) to estimate classifier accuracy from overall feature

statistics of a test set. In the experiment, we show that themeta-dataset contains sufficient and diverse sample sets, allowing us to train

robust regressionmodels and report reasonable and promising predictions of the classifier accuracy on various test sets.We also provide

insights into application scopes, limitations, and potential future directions of AutoEval.

Index Terms—Automatic model evaluation, meta-dataset, accuracy estimation, dataset-level regression

Ç

1 INTRODUCTION

MODEL evaluation is an indispensable step in almost every
computer vision task. Using a fully labeled test set that

is unseen during training, the goal of evaluation is to estimate
a model’s (hopefully) unbiased accuracy when deployed in
real-world scenarios. In most cases, the evaluation process is
supervised, meaning that a labeled test set is given, so that the
model accuracy is calculated by comparing the predicted
labels with the ground truth labels. Fig. 1a demonstrates such
an example. In the community, there are many well-estab-
lished benchmarks, such as ImageNet [1] and COCO [2]),
which provide hold-out labeled test sets formodel evaluation.

Compared with such evaluation on benchmarks, model
evaluation in real-world deployment is not that straightfor-
ward. In the real world, conditions where models are
deployed often differ significantly from the conditions
where they are trained. As such, model performance on a
benchmark test set may not reflect the same during deploy-
ment. This requires us to re-evaluate the model accuracy
upon deployment. However, we often face scenarios where
annotations of test samples are not provided. What is more,

it is very complex and expensive to manually gather test
data annotations. Even if acquired, the annotated samples
may only represent a very limited set of environments,
which adds bias to the evaluated performance. For example,
it is costly to annotate test samples for license plate recogni-
tion systems; even if plate labels are gathered for every car,
they still cannot capture the diversity of real-world circum-
stances, such as various lighting and weather conditions.
This raises an interesting question: can we estimate the model
performance on a test set without test labels?

To answer this question, this paper studies an unsuper-
vised evaluation problem: Automatic model Evaluation
(AutoEval). Given a classifier trained on a training set, the
goal is to estimate its accuracy on an unlabeled test set. Here,
we show an example in Fig. 1b. Given a digit classifier
trained on MNIST [3], we want to predict its classification
accuracy on test sets without ground truths. Being able to
evaluate a classifier in such an unsupervised manner is cru-
cial for its application in fields like autonomous driving and
medical diagnosis. This problem is yet challenging, because
a test set contains many images, and each image has varied
and rich visual contents. Existing literature in domain adap-
tation provides us with important hints. Particularly, a small
distribution difference leads to a high target distribution
accuracy [4], [5], [6]. This implies that a large domain shift
causes a low test accuracy. In Fig. 1b, by visually inspecting
the overall differences between test and training sets, we can
roughly infer that the accuracy on the test set is low.

The above insight (distribution shift degrades accuracy)
inspires us to address AutoEval from the perspective of data
distribution. More specifically, we empirically investigate
the underlying relationship between distribution shift and
accuracy. To find out such a relationship, we need to evalu-
ate a trained classifier on many different test sets, which,
however, are difficult to collect. Therefore, we propose to use
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data synthesis to construct a meta-dataset (dataset of data-
sets).1 Unlike most existing works that treat each image as a
sample, we focus on the dataset level: in the meta-dataset,
each dataset is treated as a sample, which we term the
“sample set”. Every sample set in the meta set is generated
from a seed set that follows the same distribution as the origi-
nal training set. The generation process is achieved via vari-
ous geometric and photo-metric transformations on the seed
set e.g., blurring, background substitution, foreground rota-
tion, and translation. In the experiment, we show that the
generated sample sets exhibit a diverse spread of distribu-
tions. Importantly, these synthetic sample sets are fully
labeled because they are transformed versions of the seed
set. Using these labels, we can calculate the classifier accu-
racy on each sample set.

We conduct correlation studies on the meta dataset and
report that there exists a very strong negative linear correla-
tion between classifier accuracy and distribution difference
(the Pearson’s Correlation r < �0:88). This new finding
shows that it is feasible to estimate classifier accuracy from
distribution statistics. Therefore, we formulate AutoEval as
a dataset-level regression problem. In Table 1, we show the
analogy between standard image classification and the
AutoEval task. Because AutoEval is a dataset-level task, we
should find an effective representation for each sample set
and learn a desirable prediction function.

We propose to train regression models on the meta-data-
set. Our regression takes as input the representation of a
dataset and outputs the estimated classifier accuracy on this
set. In this work, we use the distribution-related statistics,
e.g., mean and covariance, to represent a dataset. Subse-
quently, a sample set is denoted as ðffi; aiÞ, where ai is the
classification accuracy on this sample set, and ffi is the
sample set representation. Given a meta set denoted as
fðffi; aiÞg; i ¼ 1; . . . ; N , where N is the number of sample
sets, we learn two regression models: linear regression and
neural network regression. Both are shown to have decent
performance in accuracy prediction.

We summarize the main points of this paper below.

� We introduce AutoEval, an unsupervised evaluation
problem where the goal is to estimate the accuracy
of a trained classifier on a test set without any human
annotated labels.

� We construct a meta-dataset (a dataset comprised of
many datasets) and empirically report a strong nega-
tive linear relationship between classifier accuracy
and distribution shift. This new finding demon-
strates the feasibility of estimating classifier accuracy
from overall feature statistics.

� We formulate AutoEval as a dataset-level regression
problem.We learn robust regressionmodels onmeta-
dataset. The experimental results show our models
can obtain promising predictions for real-world test
datasets.

This article is extended from our conference paper [7]. The
major extensions include the following. (i) We provide a
detailed correlation study in Section 3.1, where we empiri-
cally measure the relationship between classifier accuracy
and distribution shift. (ii) We discuss the potential cause of
the negative correlation in Section 3.3, which theoretically
supports the feasibility of predicting accuracy from distribu-
tion-related statistics. (iii) The newly included CIFAR-10
setup further validates the effectiveness of the proposed
regression models (Section 4.2). (iv) In Section 5, we show
our regression models are also effective under various train/
test combinations. (v)We provide an ablation study of neural
network regression in Section 4.2, which indicates that using
comprehensive statistics to represent a dataset is important
for the dataset-level regression. (vi) We investigate the effect
of the meta-dataset construction, study the impact of image
transformation, and discuss the generalization ability as well

Fig. 1. Problem illustration. Given a classifier trained on a training set, we commonly use a labeled test set to gain an estimate of its out-of-sample
performance, as shown in (a). However, real-world data (b) often follow distributions that differ from the original training distribution. As such, the
accuracy on the labeled test set (a) might not truly reflect the classifier generalization in real-world deployment scenarios. This motivates us to
explore the problem of Automatic model Evaluation, where the goal is to estimate classifier accuracy on various unlabeled test sets.

TABLE 1
Analogies Between Standard Image Classification

Terms and Their AutoEval Equivalents

Image Classification AutoEval

Sample Image Dataset (sample set)

Label Sample class ground truth
Accuracy of model on

sample set

Training Set Set of labeled images
Set of synthetic labeled
sample sets (meta set)

Test Set Set of unseen labeled images
Set of unseen labeled
real-world datasets

Loss Class cross-entropy Predicted accuracy RMSE

Task Classify images
Predict accuracy of model
from statistics of dataset

The analogy shows that the image classification is an image-based task, while
the AutoEval problem in this work is dataset-based.1. Inwhat follows,we termmeta-dataset andmeta set interchangeably.
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as the limitations of the regression models in Section 6.2. We
show the diversity of themeta-dataset is a key factor in learn-
ing generalizable regressionmodels.

2 PROBLEM DEFINITION

We first define a labeled test set, Dl ¼ fðxxi; yiÞg where i 2
½1; . . . ;M�, xxi is an image, yi is its class label, and M is the
number of images. Consider a training dataset Dori from an
underlying distribution S, we train a classifier fuu : xixi ! ŷi,
which is parameterized by uu and maps an image xixi to its
predicted class ŷi. Given Dl, a standard way to evaluate the
classifier is comparing the class predictions ŷi with the
ground truth yi to obtain accuracy

astandard ¼
PM

i¼1 I½ŷi ¼¼ yi�
M

; (1)

where I½�� is an indicator function returning 1 if the argu-
ment is true and 0 otherwise.

Automatic Model Evaluation (AutoEval). Given classifier fuu
and an unlabeled test set Du ¼ fxxi} for i 2 ½1; . . . ;M�, we
aim to learn an accuracy predictor A : ðfuu;DuÞ ! a, which
outputs an estimated performance a 2 ½0; 1� on this test set

aauto ¼ Aðfuu;DuÞ: (2)

In image classification,Dori andDu share the same label space.

3 METHODOLOGY

AutoEval is a dataset-level task (shown in Table 1), where we
need to consider the overall dataset characteristics. Under this
consideration, we formulate AutoEval as a dataset-level
regression problem. In the following, we first report a strong
negative linear correlation between distribution shift and clas-
sifier accuracy. This new finding demonstrates that it is feasi-
ble to predict classifier accuracy from distribution-related
statistics. We then propose two regression methods. At last,
we provide a potential cause of negative linear correlation.

3.1 Correlation Study on the Meta-Dataset

3.1.1 Meta-Dataset Construction

Motivated by the implications in domain adaptation, i.e,
distribution shift degrades accuracy [8], we empirically
measure the relationship between classifier accuracy and
distribution shift on meta-dataset: a dataset comprised of
many datasets (sample sets).

The meta-dataset is expected to (a) contain many datasets
from diverse data distributions, (b) have category labels for
each dataset, and (c) have the same label space with the
training set. Using the existing real-world datasets cannot
construct a meta-dataset that satisfies these requirements,
so we resort to data synthesis.

We synthesize sample sets from a single seed dataset.
The seed Ds is sampled from source domain S, and thus has
the same distribution as the training set Dori. Given Ds, we
use various photometric and geometric transformations and
obtain N different sample sets Dj; j ¼ 1; . . . ; N . It is worthy
of noting that the sample set inherits all the image labels
from the seed set Ds and thus they are fully labeled. We
build up the following three setups.

MNIST Setup. MNIST contains 50,000 training images and
10,000 test images from 10 classes. We train LeNet-5 on the
training set and use the test set as the seed. Since MNIST
images are binary, the foreground can be easily separated
from the background. We replace the background of each
MNIST imagewith a randompatch of an image sampled from
COCO training set. This practice generates 2,000 and 1,000
sample sets for the training and the validation, respectively.

CIFAR-10 Setup.We use ResNet-44 to train a 10-way clas-
sifier on 50,000 training images. To synthesize sample sets,
we apply image transformations on 10,000 test images.
When creating each sample set, we randomly select three
transformations from {Autocontrast, Brightness, Color, Color-
Solarize, Contrast, Rotation, Sharpness, TranslateX/Y}. In the
experiment, we use another four transformations (Cutout,
ColorTemp, Equalize, and ShearX/Y) to test the robustness of
our regression methods. Then, we apply the selected trans-
formations with random magnitudes on test images. This
practice creates 1,000 sample sets, of which we use 800 and
200 for training and validation, respectively.

COCO Setup. We choose 12 classes (i.e., aeroplane, bike,
bird, boat, bottle, bus, car, dog, horse, monitor, motorbike,
and person) from COCO dataset, and process the images
following [9] for classification task. Specifically, the images
from original training and validation sets are used for train-
ing and testing in our setup. To synthesize sample sets, we
first replace the background of objects with a random patch
of an image from COCO test set. We then randomly select
three transformations to introduce more visual changes.
Lastly, we generate 1,000 and 600 sample sets for the train-
ing and validation, respectively.

We show some examples of sample sets of MNIST and
COCO setups in Fig. 2, where background replacement and

Fig. 2. Examples of generated sample sets in the meta-dataset ( left : COCO setup; right : MNIST setup). The seed set (labeled) is from the same
distribution with the original training set; they share the same classes but do not have image overlap. The sample sets are generated from the seed
set by using background replacement and image transformations . The sample sets exhibit distinct data distributions, and yet inherit the foreground
objects from the seed set, and thus they are fully labeled.
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various visual changes can be observed. The sample sets
inherit the foreground objects from the seed set, and thus
they are fully labeled. Examples of some transformations
are also shown in Fig. 3. In the appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3136244,
we present detailed transformation hyper-parameters and
more visual examples of the meta-dataset.

3.1.2 Observation: Negative Linear Correlation

Between Test Accuracy and Distribution Shift

Given a meta set and a classifier trained on the training
dataset Dori, we now measure the statistical relationship
between classifier accuracy and distribution shift.

The distribution shift can be represented by first- and sec-
ond-order statistics of the output image feature representa-
tions [11], [12], [13]. In this work, we use the Fr�echet distance
(FD) to measure the distribution shift. Other measurements
can also be used, such as MMD [13]. The Fr�echet distance
(FD) is defined as

FDðDori;DÞ ¼ mmori � mmk k22
þ TrðSSori þ SS� 2ðSSoriSSÞ

1
2Þ; (3Þ

where mmori and mm are the mean feature vectors of Dori and D,
respectively. SSori and SS are the covariance matrices of Dori

and D, respectively. They are calculated from the image fea-
tures (i.e., activations in the penultimate of the classifier) on
Dori andD, respectively, which are extracted using the classi-
fier fuu trained on Dori. We use LeNet-5, ResNet-44, and
ResNet-50 as the classifiers onMNIST, CIFAR-10, and COCO
setup, respectively.

Strong Negative Linear Correlation. In Fig. 4, we plot accu-
racy against the distribution shift on the three setups
(MNIST, COCO, and CIFAR-10). Across these setups, we
consistently observe a very strong negative and linear corre-
lation between accuracy and distribution shift: the Pearson’s
Correlation (r) is less than �0:88. That is, the classifier tends
to have a low accuracy on the sample set which has a high
distribution shift from the training set Dori. In Section 8, we
provide a discussion of potential cause of such strong nega-
tive correlation.

3.2 Regression Model and Dataset Representation

3.2.1 Formulation

Motivation. The above correlation study validates the feasi-
bility to estimate classifier accuracy from the distribution
shift. In AutoEval, the training set and learned classifier are
given and fixed, so the distribution shift is only determined
by the test set. In other words, we can estimate classifier
accuracy from the representation of the test set. Resulting
from such inspiration, we formulate AutoEval as a regression
problem: each sample is a dataset, represented by a feature
and labeled by the classifier accuracy on the dataset itself.

Dataset-Level Regression. Given N sample sets in a meta-
dataset, we denote the jth sample set Dj as ðffj; ajÞ, where ffj

is the representation of Dj, and aj 2 ½0; 1� is the recognition
accuracy of classifier fuu on Dj. We aim to learn a regression
model (accuracy predictor), written as

aj ¼ AðffjÞ: (4)

We use a standard squared loss function for this model

L ¼ 1

N

XN

j¼1

ðâj � ajÞ2; (5)

where âj is the predicted accuracy of the jth sample set Dj,
and aj is the ground truth classifier accuracy on Dj.

During testing, we extract the dataset representation ffu of
an unlabeled test set Du, and obtain estimated classification
accuracy using a ¼ AðffuÞ. To learn regression models
defined in Eqs. (4) and (5), we need to specify the design of 1)
the regressionmethodA and 2) the dataset representation ffj.

3.2.2 Linear Regression

We first introduce a standard linear regression model

alinear ¼ AlinearðffÞ ¼ w1flinear þ w0; (6)

where flinear 2 R is the representation of sample set D, and
w0; w1 2 R are parameters of this linear regression model.
This model is based on the negative linear correlation
between classifier accuracy and distribution shift. We define
flinear as the quantified domain shift between dataset D and
the original training set Dori. Specifically, we use the Fr�echet
distance [14] (Eq. (3)) to measure the distribution shift.

3.2.3 Neural Network Regression

Besides linear regression, we introduce a neural network
regression model, aneural ¼ AneuralðffneuralÞ, which has the
same formulation as Eq. (4). In practice, we use a simple fully
connected neural network for regression. The model Aneural

predicts the classifier accuracy aneural from the statistics
ffneural of a test dataset. In this work, we use both the first-
order and second-order moments, i.e., mean vector and
covariance matrix, which are commonly used to represent a
distribution [12], [13], [15]. Moreover, we include a 1-dim FD
score as auxiliary information to the representation. Com-
pared with linear regression, the neural network regression
uses a richer dataset representation, written as

ffneural ¼ ½flinear;mm; ss�; (7)

Fig. 3. Visual examples of transformations used for constructing the
meta-dataset. Here we show autoContrast, rotation, translation, bright-
ness, and color. For other used transformations, we refer readers to [10].

DENG AND ZHENG: AUTOEVAL: ARE LABELS ALWAYS NECESSARY FOR CLASSIFIER ACCURACY EVALUATION? 1871

Authorized licensed use limited to: Australian National University. Downloaded on May 28,2024 at 12:05:14 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3136244
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3136244


where flinear 2 R is the Fr�echet distance betweenD andDori, ss
is the weighted summation of SS, mm andSS are calculated in the
sameway as Eq. (3). CovarianceSS 2 Rd�d is very high-dimen-
sional, making training difficult. Dimension reduction is thus
necessary. We calculate ss by taking a weighted summation of
each row of SS, i.e., we choose to right multiply SS 2 Rd�d with
a d� 1-dim vector. This vector is learned along with network
parameters by the regression loss. Lastly, if the feature
extracted from fuu is d-dim, the dimensionality of ffneural is
1þ 2d.

3.3 Potential Cause of Negative Linear Correlation

The formulation of dataset-level regression is based on the
strong negative linear correlation between distribution shift
and classifier accuracy. To understand such correlation, we
provide a potential explanation. Given labeled samples
ðxx; yÞ from an underlying distribution S, the overall objec-
tive in classification is to learn a classifier fuu that minimizes
the population loss

LSðfuuÞ ¼ E
ðxx;yÞ�S

½I½fuuðxxÞ 6¼ y�� : (8)

Since the distribution S is unknown, we instead evaluate
the classifier on a labeled test set Dl drawn from the distri-
bution S

LDlðfuuÞ ¼ 1

jDlj
X

ðxx;yÞ2Dl

I½fuuðxxÞ 6¼ y� : (9)

The test error LDlðfuuÞ is used as a proxy for the popula-
tion loss LSðfuuÞ. If a classifier fuu achieves a low-test error,
we assume that it will perform similarly well on future
and unseen samples from the same distribution S [16],
[17].

Given a sample set D from a distribution T , we calculate
another test loss LDðfuuÞ. Classical theory [8], [18] for domain
adaptation across different distributions typically relates clas-
sifier accuracy drop on a new test set to distribution discrep-
ancy. Following the practice in [17], we decompose the loss
difference (i.e., the accuracy drop) between LDðfuuÞ and LDlðfuuÞ
into three parts (dropping the dependence on fuu to simplify
notation)

LDl � LD ¼ ðLDl � LSÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Adaptivity gap

þ ðLS � LT Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Distribution Gap

þ ðLT � LDÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Generalization gap

:

Generalization Gap. The third termLT � LD is the standard
generalization gap commonly studied in machine learning.
It is determined solely by the random sampling error.

Adaptivity Gap. The first term LDl � LS is the adaptivity
gap. It measures the extent to which using the information
of test set Dl for training classifier fuu causes the test error
LDl to underestimate the population loss LS . A typical
example of leveraging test set information is using the test
set to tune hyperparameters of fuu. This may make fuu per-
form well only on specific examples in the test set, so that
test error LDl cannot truly reflect the generalization error of
classifier fuu. If assuming fuu is independent of the test set Dl,
the adaptivity gap would have the same meaning as the
generalization gap [17].

Distribution Gap. The term LS � LT the distribution gap.
It quantifies how much the change from the original distri-
bution S to the new distribution T affects the model fuu.

Based on the above decomposition, we now discuss how
the loss difference (i.e., the accuracy drop) varies when the
classifier is tested on different samples sets. Specifically, the
adaptivity gap is only calculated on the source distribution
and is the same for different sample sets, so it does not con-
tribute to the change of the loss difference. Therefore, the
generalization gap and distribution gap are the two factors
that impact how the loss difference varies. In fact, according
to classical works [8], [18] of domain adaptation which have
theoretically characterized the accuracy of classifiers under
distribution shift, the distribution gap is more likely to domi-
nate the way the loss difference changes, compared with the
generalization gap. Particularly, theory suggests that a small
distribution difference leads to a high target distribution
accuracy [4], [5], [6]. Therefore, the loss difference (i.e., the
accuracy drop) increases in proportion to the distribution
gap. This is the potential cause of negative linear correlation
between the classifier accuracy and distribution shift (Fig. 4).

4 EXPERIMENT AND ANALYSIS

4.1 Experimental Settings

Real-World Datasets for Testing. This work is an early attempt
to the AutoEval problem. To our knowledge, we can find

Fig. 4. Relationship between the distribution shift (Fr�echet distance) and classifier accuracy on three meta-datasets of three setups. From left to right:
MNIST setup with LeNet-5, CIFAR-10 setup with ResNet-44, and COCO setup with ResNet-50, respectively. Each point represents a sample set of
the meta-dataset. Across three setups, we consistently observe the strong negative linear correlation (Pearson’s Correlation r < �0:88) between
distribution shift and classifier accuracy. This indicates that the classifier tends to gain a high accuracy on the sample set which has a low distribution
shift with training set. The straight lines are calculated by linear regression.
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only a few real-world datasets that have different distribu-
tions while containing the same classes. Specifically, for the
MNIST setup, the test sets are USPS [20] and SVHN [21],
both with 10 classes; for the COCO setup, we use three data-
sets: PASCAL [22], Caltech [23], and ImageNet [1], all with
the common 12 classes; and for the CIFAR-10 setup, we use
CIFAR-10.1 [24] as the test set.

Metrics. AutoEval is to predict classifier accuracy on an
unlabeled test set. To evaluate the performance of such pre-
dictions, we use root mean squared error (RMSE) and mean
absolute error (MAE) as metrics. RMSE measures the aver-
age squared difference between the estimated accuracy and
ground-truth accuracy. MAE measures the average magni-
tude of the errors. Small RMSE and MAE values correspond
to good predictions and vice versa.

Baselines. We first present two intuitive solutions to the
AutoEval problem, which are not learning based. They are
motivated by the pseudo labeling strategy applied in many
vision tasks [25], [26], [27], [28], [29], [30]. The basic assump-
tion is: if a class prediction is made with a high softmax out-
put value, it is likely to be correct. The intuitive two
solutions are described below.

Prediction score based solution. Given an input image, we
define its confidence score as the maximum softmax output.
If the score is greater than a threshold t1 2 ½0; 1�, this image is
regarded as being correctly classified.

Entropy score based solution. A score is calculated as the
entropy of softmax outputs, normalized by logðKÞ, whereK
is the number of classes. Also, an image with a score less
than a threshold t2 2 ½0; 1� is regarded as correctly classified.
Note that, it is challenging to choose optimal thresholds for
the two solutions because we do not have manual labels of
test set. Moreover, as to be shown in the experiment, both
solutions are rather sensitive to the thresholds, so arbitrarily
setting the thresholds would compromise the performance.
Thus, in the experiment, we show prediction results of the
two solutions under several manually chosen thresholds.

Furthermore, we introduce energy score based method [19]
for comparison. It better distinguishes in- and out-of-distri-
bution samples than the softmax score. If a test sample has a
lower energy score than a threshold t3, it is considered to be

correctly classified. Follow the practice in [19], [31], we
select the threshold t3 on the validate set and applied it to
unseen test sets. Specifically, the threshold is computed so
that 95% of samples in validation set have energy scores
lower than the threshold t3.

4.2 Classifier Accuracy Prediction

Two Intuitive Solutions are Threshold-Sensitive. Accuracy pre-
diction results of the two intuitive solutions are presented in
Table 2. For the predicted score based solution, under the
COCO setup and threshold of t ¼ 0:7, its estimation error is
RMSE ¼ 1:49% which seems good. However, its prediction
quality drops significantly (from 1:49% to 6:96%) when using
a high threshold of t1 ¼ 0:9. Under the CIFAR-10 setup, its
estimation error increases from 0.75% to 5.60% when we
increase the threshold t1 from 0.8 to 0.9.Moreover, its predic-
tions are very poor under MNIST setup.With three values of
t1, the RMSE is consistently high, i.e., 18.11%, 22.66% and
25.59%, respectively. For the entropy score-based solution,
we also have similar observations with the predicted score-
based solution across the three setups.

To further examine their sensitivity to thresholds, we
plot the RMSE against various thresolds for the two solu-
tions, and results are shown in Fig. 5. We observe that they
can make good predictions when using optimal thresholds
and that the optimal thresholds are different for three set-
ups. We also confirm that the two solutions are threshold-
sensitive.

It is infeasible to select the optimal threshold for the two
intuitive solutions because (1) test labels are unavailable
and (2) the test scenarios keep changing. This compromises
the practicability of the two solutions. In comparison, our
regression models do not depend on such a hyper-parame-
ter and yields more stable estimations. That said, it would
be interesting to address this drawback in the context of
AutoEval. One possible way might be using metadata sets
to learn a strategy to adaptively select appropriate thresh-
olds for various test sets.

Regression Methods Obtain Promising Predictions. In the
MNIST setup, the RMSE values of linear regression and neu-
ral network regression are 9.87% and 1.46%, respectively.

TABLE 2
Method Comparison in Predicting Classification Accuracy

Train Set MNIST CIFAR-10 COCO

Unseen Test Set SVHN USPS RMSE# CIFAR10.1 RMSE# Pascal Caltech ImageNet RMSE#
Ground-truth Accuracy 25.46 64.08 - 87.65 - 86.13 93.40 88.83 -

Predicted Score (t1 ¼ 0:7) 10.09 43.60 18.11 91.40 3.75 88.34 93.28 90.17 1.49
Predicted Score (t1 ¼ 0:8) 7.97 37.22 22.66 86.90 0.75 84.32 90.78 86.50 2.28
Predicted Score (t1 ¼ 0:9) 7.03 32.94 25.59 82.05 5.60 78.61 87.71 81.33 6.96

Entropy Score (t2 ¼ 0:1) 4.49 22.52 32.92 76.25 11.40 73.51 84.19 76.17 11.61
Entropy Score (t2 ¼ 0:2) 6.42 31.24 26.84 83.50 4.15 80.62 88.57 83.33 5.29
Entropy Score (t2 ¼ 0:3) 8.32 39.21 21.36 89.55 1.90 86.45 92.43 88.17 0.70

Energy Score [19] 2.23 26.91 30.99 89.75 1.60 82.30 89.42 85.00 3.88

Linear Regression 26.28 50.14 9.87 81.84 5.81 83.87 79.77 83.19 8.62
Neural Network Regression 27.52 64.11 1.46 86.82 0.83 87.76 89.39 91.82 3.04

We use three classification setups: MNIST, CIFAR-10, and COCO. We compare five methods: two intuitive solutions (predicted score based solution and entropy
score based solution), energy score [19], linear regression, and neural network regression (Section 3.2). For each setup, we report the estimated classification accu-
racy (%) and ground-truth recognition accuracy (%). We use the RMSE (%) to evaluate estimation precision.
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These results are generally lower while being more stable
than the two score-based solutions because they are not
threshold-dependent. In CIFAR-10 setup, the neural net-
work regression obtains good estimation on unseen test set
CIFAR10.1 (0.83% in RMSE). Moreover, we observe that our
regression models achieve reasonably good estimations on
COCO setup. For example, network regression produces
RMSE score of 3.04%.

In addition, we observe that the energy score method can
make reasonably accurate predictions: it achieves 1.60% and
3.88% RMSE on CIFAR-10 and COCO setups, respectively.
Compared with this method, our network regression is very
competitive. For example, neural network regression produ-
ces 0.77%, 0.84%, and 29.53% lower RMSE on CIFAR-10,
COCO and MNIST setups, respectively. Linear regression
outperforms [19] under the MNIST setup, but not the others.
These new results further demonstrate that our dataset-level
regression methods, especially the neural network regres-
sion, are an effective and feasible solution to the AutoEval
problem.

5 ANALYSIS OF REGRESSION MODELS

Neural Network Regression is Generally Superior to Linear
Regression. In Table 2, we compare the neural network regres-
sion with linear regression under the three setups and and
observe that the former is more accurate (i.e., its prediction’s
variance is lower). Specifically, linear regression could fail in
some scenarios such as Caltech in COCO setup. The poor
performance of linear regression on Caltech is mainly due to
three reasons. First, comparing with Pascal and ImageNet,
Caltech looks muchmore different from COCO. In fact, if we
plot it in Fig. 4, it lies far from the regressed line. As such,

making predictions of such an “outlier” is itself a challenging
task. Second, the linear regression model uses a very simple
feature, the 1-dimensional FD score, to represent the differ-
ence between the training set and sample sets. In compari-
son, neural network regression uses a more complex feature,
including the mean, co-variance and FD. Third, the linear
regression model itself is very simple, comprising of only
two learnable parameters, while neural network regression
has much more parameters and higher capacity. Therefore,
neural network regression can better capture the complexity
of the sample sets andmakemore accurate predictions of the
challenging Caltech dataset. In fact, the generated sample
sets should be complex and diverse, which helps cover as
many cases and distributions as possible. These complex
and diverse sample sets couple well with the neural network
regression model, yielding better performance than the lin-
ear regressionmodel.

The above discussions indicate two potential ways to
make regression models generalize well on unseen test sets:
(1) building up a diverse meta-dataset (e.g., using possibly
many various transformations), leveraging more compre-
hensive statistics to represent a dataset; (2) building stron-
ger learning architectures. In the following, we study the
dataset representation used by regression models and dis-
cuss the diversity of meta-dataset in Section 6.

Ablation Study on Dataset Representation of Network Regres-
sion. As illustrated in Eq. (7), neural network regression
uses a richer dataset representation than linear regression.
The representation used in network regression includes:
FD, Mean, and Covariance. Here, we study the effect of
dataset representation and report results in Fig. 7 under the
COCO setup. Note that when only using FD as the repre-
sentation, the neural network regression reduces to linear
regression. We show that the estimation is more accurate
when using more statistics for dataset representation. For
example, only using FD and Mean as the representation
achieves 1.84 % higher error than using all statistics. The
results indicate that representing a dataset with comprehen-
sive statistics is important for our dataset-level regression.
We think it would be interesting to explore other potential
dataset representations.

Robustness of Regression Models to Novel Visual Changes. To
study whether our models can deal with unseen visual var-
iations, we introduce synthesized datasets for testing. Spe-
cifically, we edit the three natural datasets (ImageNet,
Pascal and Caltach) with two groups of transformations:
{Cutout, Shear} and {Equalize, ColorTemperature}. These trans-
formations are not used in meta-dataset creation. In Fig. 6,
we observe that linear regression can make promising pre-
dictions on six out of nine datasets. However, it cannot
achieve desirable predictions on two edited Caltech sets
(e.g., its absolute error is 13.18 % on Caltech-A). Moreover,
neural network generalizes well on these synthesized test
sets. It consistently produce reasonably good predictions on
nine test sets. The above analysis suggests that both regres-
sion models have ability to handle unseen variations, while
network regression is more robust than linear regression.

Estimations for the Classifiers Trained on Different Datasets.
To further validate the effectiveness of our regression meth-
ods, we apply them to predict the recognition accuracy of
classifiers trained on different datasets. Results are presented

Fig. 5. RMSE (%) of the predicted score-based solution (top) and the
entropy score-based solution (bottom) against various threshold values
(t1) and (t2), respectively. We observe that both solutions can produce
accurate estimations when using an optimal threshold value but are
threshold-sensitive. Moreover, the optimal threshold values are different
for the three setups.
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in Fig. 8. We observe our regression models make promising
estimations. For example, for a classifier trained on SVHN
and tested on USPS and MNIST (SVHN ! USPS, MNIST),
linear regression and network regression achieve 5.80% and
2.73% RMSE, respectively. For an object classifier trained on
Pascal (Pascal ! ImageNet, COCO, Caltech), our methods
are also reasonably effective: linear regression and network
regression give 4.81% and 3.33% RMSE in the estimated
accuracy, respectively. The above experimental results show
that dataset-level regression is indeed a feasible way to esti-
mate classifier accuracy.

6 ANALYSIS OF META-DATASET

The synthesized meta-dataset is a crucial part for learning
robust regressionmodels. The underlying assumption is that
the meta-dataset can cover most of the variations in terms of
distribution in the real-world scenarios. In this section, we
first discuss the diversity of the meta-dataset from three
aspects, i.e., meta set size and sample set size. We then ana-
lyze the impact of meta-dataset construction (i.e., image
transformation and background change) on regression mod-
els. Lastly, we discuss the generalization ability of regression
models.

6.1 Diversity of Meta-Dataset

Meta Set Size. Ameta set contains training samples/datasets
for regression model training. We first study the impact of

meta set size on the regression methods, and results are
shown in Fig. 9 (first row). We observe that results of linear
regression are relatively stable with different meta set sizes.
Good performance is achieved even with only 50 sample
sets. This is because linear regression only has two parame-
ters (Eq. (6)), which can be learned with relatively few sam-
ples [32]. In comparison, neural work cannot achieve results
that are as good when the number of sample sets is small.
When provided with adequate sample sets, the neural net-
work learns effectively from rich and diverse sample data-
sets and tops linear regression.

Sample Set Size. By default, the number of images in each
sample set is equal to that of seed Ds. Here, we study the
influence of the sample set size on the regression methods.
Specifically, we use 1,000 as the size of the meta-dataset and
vary the sample set size. We plot the absolute error against
different sample size in the second row of Fig. 9. We clearly
observe that linear regression is relatively stable under dif-
ferent sample set sizes, while performance of the neural net-
work regression generally exhibits a decreasing trend. For
example, on the ImageNet test set, when the sample set size
increases from 50 to 6,000, the absolute error of linear
regression keeps at around 6.0%. In comparison, absolute
error of neural network regression drops by nearly 6.0%. In
fact, neural network regression needs more images in each
sample set for training. More images in each sample set
make the distribute-related representations more accurate
and thus are beneficial for learning the network regression
model.

6.2 Study on Meta-Dataset Construction

In our work, we use background change and image trans-
formation to construct the meta-dataset. Both techniques
can introduce various visual variations. Here, we study the
impact of the two techniques on the diversity of meta set.
By default, the meta set is constructed by using background
changes and three random transformations. We denote it as
Meta set-Def. We include another four meta sets. They are:
meta set-A, which is constructed by using background
change only; Meta set-B, which is constructed by using three
random transformations; Meta set-C, which is constructed
by using background change and only one random transfor-
mation; and Meta set-D, which is constructed by using six
random transformations.

Fig. 6. Comparing linear regression and neural network regression when
test data undergo new transformations. We use two groups of transfor-
mations: {Cutout, Shear} and {Equalize, ColorTemperature}; the corre-
sponding transformed sets are denoted by “-A” and “-B”. We report the
absolute error (%) of predictions, and the ground truth accuracy is also
shown beneath each dataset. (-) / (+) means the predicted accuracy is
lower / higher than the ground-truth accuracy, respectively.

Fig. 8. Accuracy estimation error (RMSE, %) for the classifiers trained on
different datasets. In the legends, datasets on the left of “!” are the
training set, and those right to “!” are test sets. For example, in “SVHN
! USPS, MNIST”, we estimate accuracy of a classifier trained on SVHN
and tested on MNISTand USPS. We perform experiments on two tasks:
(a) digit classification ( left ) and (b) object classification ( right ). These
results also validate the effectiveness of the porposed regression mod-
els trained for the AutoEval problem.

Fig. 7. Ablation study on dataset representation of neural network
regression. When only using FD as the representation, the neural net-
work regression reduces to linear regression. We observe that using
more statistics to represent a dataset leads to more desirable estima-
tions. The results are obtained under the COCO setup.
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We learn regression models on five meta sets and then
compare them in Fig. 10. Results are obtained under the
COCO setup. First, we observe that linear regression models
trained on fivemeta sets produce similar results on ImageNet
and Pascal.Moreover, they fail tomake desirable predictions:
their absolute errors are higher than 10%. Second, network

work regression achieves more accurate estimations when
using a more diverse meta set for training. For example,
when trained on Meta set-A, its absolute error is higher than
10% on Caltech. However, when trained on meta set-D, its
error drops to around 3.59% on Caltech. Third, we observed
that the network regression models trained on meta set-D
and meta set-Def produce comparable predictions. This
shows that using many transformations introduces plenty of
visual changes and could avoid using background changes
(which requires mask annotations). Furthermore, whenmore
visual variations are introduced in the meta set (e.g., Meta
set-D andMeta set-Def), the network regressionmodel learns
better, and its advantage over the linear regression model
becomesmore obvious.

Impact of Image Transformations for Constructing Meta Sets .
Here, we conduct experiments to study the impact of trans-
formations on the effectiveness of meta-datasets. Specifi-
cally, we use two groups of new transformations to construct
Meta set-GroupA and Meta set-GroupB. The transforma-
tions are provided in [33]. The first group of transformations
are: {Grayscale, ElasticTransformation, PiecewiseAffine, Invert,
FilterBlur, EnhanceBrightness, Fog, AdditiveGaussianNoise} and
the second group are: {LinearContrast, Rain, JpegCompression,
FilterDetail, EnhanceSharpness, MultiplyHue, Emboss, AddTo-
Saturation} . Note that, transformations in both groups intro-
duce uncommon visual changes that are less likely to appear
in the testing environments we used in the experiment.

In Fig. 11, we report the results of regression models
trained on three different meta-datasets: Meta Set-Def, Meta
set-GroupA and Meta set-GroupB. We have two observa-
tions. (1) Although the transformations used in Meta set-
GroupA and Meta set-GroupB introduce relatively rare
visual changes, they are helpful for regression model to
learn the underlying relationship between distribution shift
and classifier accuracy. More specifically, regression models
trained on both meta-datatsets make promising predictions.

Fig. 9. The impact of meta set size (first row) and sample set size (second row) on the performance of regression methods. We report the absolute
errors (%) between estimated classifier accuracy and the ground-truth accuracy. We observe that linear regression is relatively stable with different
sample set and meta set size. In comparison, neural network needs more and larger sample sets for training.

Fig. 10. Absolute errors (%) of linear regression (top) and network
regression (bottom) trained on five meta sets. They are: (1) Meta set A,
which is constructed by using background change; (2) Meta set B, which
is constructed by conducting three random transformations; (3) Meta set
C, which is constructed by using background change and one random
transformation; (4) Meta set D, which is constructed by using six random
transformations; (5) Meta set-Def, which is constructed by using back-
ground change and three random image transformations. By default, we
use Meta set-Def. The results are under COCO setup.
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For example, trained on Meta set-GroupA, linear regression
and network regression achieve 9.22% and 4.31% RMSE
on COCO setup, respectively. (2) We find that regression
models trained on Meta Set-Def achieve more accurate esti-
mations. This is because the transformations used in Meta
Set-Def introducemore common visual changes such as rota-
tion, translation, and light variation, which are often encoun-
tered in the testing environments. This is aligned with our
suggestion that the meta-dataset should reflect most of
the visual changes (or their equivalences) in the testing envi-
ronments. For the application scenarios, if we know some
prior patterns or conditions in the testing environments, we
could customize transformations to be included in the meta-
dataset to improve the effectiveness of regressionmodels.

Discussion on the Generalization Ability of the Regression
Models. The meta-dataset is expected to contain varied test
distributions. However, in real-world situations, we might
meet some corner cases and novel distributions that are not
contained in the meta-dataset. In these cases, the estima-
tions might not be accurate. To further validate the generali-
zation ability of the network regression model, we newly
use three natural image test sets with novel distribution
shifts: ImageNet-V2 [17], a reproduction of the ImageNet
test set; ImageNet-VID-Robust [34], which is collected from
videos; and ImageNet-Adv [35], which is assembled by the
images that are misclassified by ResNet-50. The absolute
error of network regression is 5.6% and 4.92% on ImageNet-
V2 and ImageNet-VID-Robust, respectively. However, on
ImageNet-Adv with adversarial filter shifts, the estimation
error is 22.5%. The results suggest that the meta-dataset
can simulate the distributions of ImageNet-V2 and Image-
Net-VID-Robust but fails to cover the adversarial case of
ImageNet-Adv. Note that, most classifiers achieve low clas-
sification accuracy on ImageNet-Adv. [35]. A possible way
to cope with the failure is to specially design samples sets
that have such hard samples.

Furthermore, if some unlabeled test images are given, like
the settings of domain adaptation [8] and semi-supervised

learning [36], we could customize sample sets that are simi-
lar to the testing environments. This potentially improve
the effectiveness of meta-dataset. For example, we can syn-
thesize sample sets through a graphics engine [37], [38] or
style transfer [39], [40] to approximate the style of the test
images. Moreover, we could search transformation poli-
cies [10] to create sample sets that have similar distribu-
tions to the test set.

7 RELATED WORK

Model Generalization Prediction. There are someworks develop
complexity measurements on training sets andmodel param-
eters to predict generalization error [41], [41], [42], [43], [44],
[45]. Corneanu et al., [43] use the persistent topologymeasures
to predict the performance gap between training and testing
error, even without the need of any testing samples. Jiang
et al., [41] introduce a measurement of layer-wise margin
distributions for generalization ability. Neyshabur et al., [44]
develop bounds on the generalization gap based on the prod-
uct of norms of theweights across layers.Moreover, the agree-
ment score of several classifies can be used for estimation [46],
[47], [48], [49], [50].

Instead of studying the complexity measurements, we
use statistics related to test distributions for accuracy esti-
mation. Moreover, we are concerned with various test dis-
tributions that have domain gaps with the training one,
while the aforementioned works typically assume a fixed
test set without a domain gap.

Out-of-Distribution Generalization. Machine learning mod-
els need to be able to generalize from training distribution
to new environments under dataset shift [51], [52]. To study
the problem of out-of-distribution generalization, several
benchmarks are proposed [35], [52], [53], [54], [55], [56]. For
instance, Hendrycks et al. , [53] propose a dataset to evaluate
the corruption and perturbation robustness of models. Gul-
rajani et al., [56] introduce DomainBed to evaluate recent
domain generalization methods. To improve out-of-distri-
bution generalization, some propose to learn robust features
[40], [57], [58], [59], [60], [61], [62], with examples including
adversarial domain augmentation [57], [58], [63] and inter-
domain gradient matching [61], [62]. Under the out-of-dis-
tribution environments, instead of aiming to improve model
generalization ability, our method makes it feasible to esti-
mate model performance without ground truths.

Out-of-Distribution Detection. This task [25], [29], [31], [64],
[65], [66], [67], [68], [69] considers the distribution of test
samples. Specifically, this task aims to detect abnormal test
samples that follow a distribution different from the train-
ing distribution (e.g., samples that do not contain any of the
classes modeled in the train distribution). This task has
been studied from different views, such as anomaly detec-
tion [70], [71], [72], open-set recognition [73], uncertainty
[68] and rejection [31], [69], [74]. For example, Hendrycks
et al., [25] use probabilities output from a softmax classifier
as indicator to find out-of-distribution samples. Liu et al.,
[19] propose to use energy score to detect out-of-distribu-
tion samples. The above methods have the potential to
improve AutoEval performance in the open world. Specifi-
cally, they can detect and reject abnormal and unknown
class samples. This ensures that the overall statistics of the

Fig. 11. Effect of different image transformations for meta set genera-
tion. We compare linear regression and network regression using the
mean squared error (RMSE, %). we construct meta sets using three
groups of image transformations. They are: (1) Meta set-Def, which ran-
domly selects three transformations from {Autocontrast, Brightness,
Color, ColorSolarize, Rotation, Sharpness, TranslateX/Y} ; (2) Meta set-
GroupA, which randomly selects three transformations from {Grayscale,
ElasticTransformation, PiecewiseAffine, Invert, FilterBlur, Enhance-
Brightness, Fog, AdditiveGaussianNoise} ; and (3) Meta set-GroupB,
which randomly selects three transformations from {LinearContrast,
Rain, JpegCompression, FilterDetail, EnhanceSharpness, MultiplyHue,
Emboss, AddToSaturation} . By default, we use Meta set-Def in this
paper. The results are under COCO setup ( left ) and CIFAR-10 setup (
right ). We can observe decent and similar performance produced by
using the three meta sets, suggesting that our regression methods are
robust under various but reasonable meta sets.
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test samples are accurate, which helps the regression model
in the open set scenario.

Unsupervised Domain Adaptation. Our work also relates to
unsupervised domain adaptation, where the goal is to use
labeled source samples and unlabeled target samples to
learn a model that can generalize well on the target dataset
[6], [75], [76], [77], [78].

Many moment matching schemes have been studied for
this task [6], [11], [11], [12], [75], [79], [80]. Long et al. [75]
and Tzeng et al. [6] utilize the maximum mean discrepancy
(MMD) metric [13] to learn a shared feature representation.
Peng et al. [12] propose to address multi-source domain
adaptation by matching feature moments. In this work, we
empirically quantify the relationship between classifier
accuracy and distribution shift. We further validate that
dataset-level statistics can be used to estimate classifier per-
formance on unlabeled test sets.

Dataset-Level Analysis. While most computer vision tasks
can be described as some forms of image-level analysis, few
literature explores the dataset-level analysis. Some work has
focused on optimizing dataset construction by selecting a
subset of images for pretraining for a specific downstream
task [81], [82], [83]. For example, Yan et al. [83] introduce a
large-scale search engine to find the most useful transfer
learning data for the target task. Another avenue of research
aims to automatically synthesize a labeled training set for
downstream tasks [37], [38], [84]. They propose to learn to
edit the parameters of graphic engines to minimize the con-
tent gap between synthetic training data and real test data.
Our work is related in that we also study inter-dataset rela-
tionships, but have a distinct purpose. Specifically, this work
aims to estimate classifier performance on an unlabeled data-
set from the perspective of the distribution difference.

8 CONCLUSION AND PERSPECTIVES

This paper investigates the problem of predicting classifier
accuracy on test sets without ground truth labels. It has the
potential to yield significant practical value, such as predict-
ing system failure in unseen real-world environments.
Importantly, this task requires us to derive similarities and
representations on the dataset level,which is significantly dif-
ferent from common image-level problems. We make some
tentative attempts by devising two regression models which
directly estimate classifier accuracy based on overall distribu-
tion statistics.We build a dataset of datasets (meta-dataset) to
train the regression models. We show that the synthetic
meta-dataset can cover a good range of data distributions
and benefit estimations of regression models on real-world
test sets. For the remainder of this section, we discuss the lim-
itations, potential, and interesting aspects of AutoEval.

Application Scope and Limitation. Our regression models
assume that variations in the real-world cases can be
approximated by the image transformations in meta set.
Given diverse sample sets, our models learn to make prom-
ising predictions for novel test scenarios. However, as dis-
cussed in Section 6.2, if the test images exhibit very special
patterns or conditions, our models might not be able to
work well. On a related extreme case, the test dataset might
only contain ambiguous and adversarial samples (e.g.,
ImageNet-Adv [35]), meaning that the test accuracy could

be as poor as random. Such cases are not included in meta-
dataset. Potentially, the above this might be alleviated by
including such cases into the meta-dataset with a specific
dataset design.

Furthermore, in this work, we mainly consider close-set
classification in which training and test sets share the same
label space. In practice, we might encounter images from
unseen classes, i.e., the open-world scenario. These novel
images might have a negative impact on the overall statistics
of test set and thus compromise the system performance.
To this problem, a feasible solution is first using out-of-
distribution detection [19], [66] or outlier detection [69], [71]
techniques to detect and reject such novel images, and then
estimating classifier accuracy using the statistics of the remai-
ning images. In fact, studying the AutoEval under the open-
world setting is a very interesting research direction.

Dataset Representation. Our work relates to an interesting
research problem: how to represent a dataset? This problem
is more challenging than describing a single image because
a dataset contains more information. This work uses distri-
bution-related feature statistics (mean and covariance) to
characterize a classification dataset. In the light of results in
Fig. 7, we think comprehensively representing a dataset is
essential to our regression modes. Namely, it is a potential
research direction to explore other representations for better
representing a dataset so as to improve performance of
regression models. Furthermore, it would be interesting to
study the dataset representation in other tasks (e.g., object
detection and semantic segmentation), where global feature
statistics might be unsuitable to represent a dataset.
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