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Toward a Holistic Evaluation of Robustness in
CLIP Models

Weijie Tu"”, Weijian Deng

Abstract—Contrastive Language-Image Pre-training (CLIP)
models have shown significant potential, particularly in zero-shot
classification across diverse distribution shifts. Building on existing
evaluations of overall classification robustness, this work aims to
provide a more comprehensive assessment of CLIP by introducing
several new perspectives. First, we investigate their robustness to
variations in specific visual factors. Second, we assess two critical
safety objectives—confidence uncertainty and out-of-distribution
detection—beyond mere classification accuracy. Third, we evaluate
the finesse with which CLIP models bridge the image and text
modalities. Fourth, we extend our examination to 3D awareness in
CLIP models, moving beyond traditional 2D image understanding.
Finally, we explore the interaction between vision and language
encoders within modern large multimodal models (LMMs) that uti-
lize CLIP as the visual backbone, focusing on how this interaction
impacts classification robustness. In each aspect, we consider the
impact of six factors on CLIP models: model architecture, training
distribution, training set size, fine-tuning, contrastive loss, and
test-time prompts. Our study uncovers several previously unknown
insights into CLIP. For instance, the architecture of the visual
encoder in CLIP plays a significant role in their robustness against
3D corruption. CLIP models tend to exhibit a bias towards shape
when making predictions. Moreover, this bias tends to diminish
after fine-tuning on ImageNet. Vision-language models like LLaVA,
leveraging the CLIP vision encoder, could exhibit benefits in clas-
sification performance for challenging categories over CLIP alone.
Our findings are poised to offer valuable guidance for enhancing
the robustness and reliability of CLIP models.

Index Terms—Contrastive language-image pre-training (CLIP),
robustness, evaluation.

I. INTRODUCTION

EVERAGING contrastive training to cohesively align im-
L ages and text within a singular embedding domain, the
CLIP model excels in delivering versatile zero-shot generaliza-
tions. This inherent proficiency enables CLIP to handle diverse
tasks without the need for task-specific fine-tuning [1], [2].
Remarkably, CLIP models exhibit outstanding zero-shot classi-
fication capabilities, even without explicit training on the target
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dataset. Moreover, they demonstrate commendable robustness
against challenging natural distributional shifts [3], [4], [5], [6],
[7]. Gaining a deeper understanding of such behaviors in CLIP
models is crucial for steering the future image-text foundational
models. Contemporary research has delved into multiple facets
of CLIP models. This encompasses areas such as dataset for-
mulation [8], reproducibility in scaling laws [9], strategies for
fine-tuning [10], adversarial classification robustness [11] and
nuances of the training distribution [12], [13].

Motivated by previous work, we conduct an in-depth analysis
of CLIP models, expanding our perspective beyond overall clas-
sification robustness. Our analysis includes several key dimen-
sions: (1) robustness to visual factors, where we assess whether
CLIP models can maintain performance when encountering
variations such as pose, size, color, lighting, and occlusions;
(2) out-of-distribution (OOD) detection, evaluating the models’
ability to identify instances with labels not present in the training
distribution; (3) predictive uncertainty, examining whether CLIP
models provide calibrated predictions that accurately reflect
uncertainty under different testing conditions; (4) zero-shot
retrieval, assessing the models’ capability to associate novel
textual queries with relevant visual content; (5) 3D awareness,
evaluating how well CLIP models handle 3D corruptions and
maintain multi-view consistency; and (6) interaction between
the vision and language encoders, investigating how these com-
ponents influence classification robustness. Within each of these
dimensions, we analyze the impact of several crucial factors on
CLIP’s behavior, including variations in training distribution,
model architectures, dataset sizes, contrastive loss, fine-tuning,
test-time prompts, and dataset curation. This comprehensive
analysis provides a thorough assessment of both the strengths
and limitations of CLIP models across these critical areas.

To this end, we evaluate 84 zero-shot CLIP models with vary-
ing visual encoder architectures, training sources, and dataset
sizes, as well as 44 ImageNet fine-tuned CLIP models. To estab-
lish a baseline, we compare these models against 127 ImageNet
models without language-image pre-training. We examine 10
visual factors variations present in the ImageNet validation
set [14], including object pose, lighting, and background, to
assess models’ visual factors-level robustness. As for OOD
detection, we employ ImageNet as an in-distribution (ID) set
following [15] and test on 5 types of OOD scenarios. Then, to
investigate the predictive uncertainty, we use a set of canonical
ImageNet distributions, such as texture, style, and perturbation
shifts. We evaluate the effectiveness of data curation methods
on the aforementioned datasets. Furthermore, we measure the
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TABLE I
SUMMARY OF EVALUATION DIMENSIONS AND KEY FINDINGS

Evaluation Dimension What We Evaluated

Key Findings

Visual Factor Robustness .
Performance under visual

variations

CLIPs outperform ImageNet models on six of ten factors;

(Sec. IV) (e.g., shape, texture, and size) Training distribution impacts visual factor robustness of CLIP.
Tg (%S(]? \l?)e tection Novelty detection ability (e.g., NINCO) Zero-shot CLIP is competitive with other models; Training
3 ’ distribution impacts detection accuracy.
é (Csbgébrs;ll;) " Alignment between prediction confi- Fine-tuning raises calibration error; LP-FT and WiSE-FT
P“ ' dence and correctness recover with temperature scaling, while FLYP remains over-
= confident. Both data distribution and quantity play key roles.
?Seetglezla}ll) Image—text matching accuracy CLIP’s Zero-shot retrieval aligns with classification accuracy;
’ data distribution and augmentation shape retrieval quality.
?;:; CA\x\//alrI?;l ess Robustness to 3D corruptions and corre- CNN-based CLIPs are more stable than ViT-based CLIP.
’ spondence matching
zfslzlcor;(lsanguage Interaction CLIP vs. LLaVA on hard category splits LLaVA outperforms CLIP on ambiguous sets; stronger LLMs
E ’ (Vicuna > Mistral) amplify gains.
2 . .
j '(I‘Sr;m;g_CP)aradlgm Impact CLIP, BLIP, SigLIP, ViTamin No paradigm dominates. ViTamin is more robust to 3D cor-
] ’ ruptions; SigLIP improves robustness but weak on calibration.
2 -
= E’Sr:(r:np)t(f:)n sttvity Prompt set size and quality LLM prompts improve accuracy but may not benefit OOD
= ! detection or calibration, and no method consistently dominates.

Fine-Tuning Impact
(Sec. X-B)

Various of fine-tuning techniques

LP-FT and WiSE-FT are well-balanced. FLYP boosts accuracy
but hurts calibration. PromptSRC preserves both.

Dataset Curation Effect

IIL Data-level (Sec. X-D) Filtering and data diversity

Data curation boosts classification, OOD, retrieval, and 3D
robustness for ViT-CLIP, but not calibration.

Our evaluation covers three levels of analysis: task-level, model-level, and data-level, each addressing distinct aspects of model behavior and robustness.

3D awareness of CLIP by geometric, semantic correspondence
estimation as in [16] and robustness against 3D-related corrup-
tions, such as near focus and motion blur [17]. Lastly, to explore
the interplay between the visual and text encoders of CLIP, we
compare CLIP models with LLaVA [18] in terms of classifica-
tion performance on the challenging diffusion model-generated
ImageNet-D [19].

This article extends our previous conference paper [20], with
the following major additions: (1) The experiment scale has
been expanded by including 25 recent zero-shot CLIP models
trained on different subsets of DATACOMP [21], allowing us
to broaden the findings to the medium-to-low accuracy regime
of CLIP models. (2) An in-depth analysis is provided to un-
cover the impact of fine-tuning objectives on the shape-bias
of CLIP models (Section IV-B). (3) The zero-shot retrieval
capability of CLIP models is explored, highlighting the sig-
nificance of training distribution as a key factor affecting per-
formance trends (Section VII). (4) A comprehensive study of
fine-tuning methods, including parameter-efficient, standard,
and contrastive fine-tuning, is presented (Section X-B). (5) A
new OOD benchmark, NINOC, is added in our evaluation, which
is ID-free and aggregates OOD classes from multiple existing
datasets (Section V). (6) The 3D-awareness of CLIP models
is evaluated by testing their performance on 3D correspondence
estimation and robustness against 3D corruptions (Section VIII).
(7) The interaction between visual and language encoders is
investigated from a classification perspective (Section IX). (8)
We extend the evaluation of dataset curation techniques to
robustness-related tasks, including out-of-distribution (OOD)
detection, calibration, visual factor-level robustness, and 3D
corruption (Section X-D).

We summarize our evaluation dimensions, covering the task,
model, and data levels, along with key findings in Table L.

II. RELATED WORK

Robustness: Machine learning models should generalize from
training distribution to novel testing environments [22], [23],
[24], [25], [26], [27]. One line of work has developed a theoreti-
cal framework to investigate model robustness [28]. Ben-David
et al. [28] were the first to propose a generalization bound
based on the VC dimension, which quantifies the difference
in classifier error between source and target distributions using
a divergence measure. Mansour et al. [29] later expanded this
analysis to accommodate more general loss functions, offering
improved generalization bounds through Rademacher complex-
ity. To investigate such capability of deep models to various
forms of test distributions, a commonly used approach is to
introduce artificial transformations onto images, such as style
transfer [30], corruptions and perturbations [31], [32]. Moreover,
many real-world datasets are introduced to assess model robust-
ness under different natural distributional shifts [3], [4], [5], [6],
[7], [33]. For instance, Idrissi et al. [14] proposes ImageNet-X
by relabelling the ImageNet validation set to provide detailed
labels for naturally occurring factors such as pose, background,
and lighting. [19] introduces 3DCC to study the robustness of
networks to 3D corruptions.

CLIP Analysis: Existing studies have explored various as-
pects of CLIP models, including dataset formulation [8], repro-
ducibility in scaling laws [9], adversarial classification robust-
ness [11], fine-tuning strategies [10], nuances of the training
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distribution [12], visual prompt [34], typographic attacks [35]
and techniques for dataset curation [21].

Our comprehensive evaluation of CLIP goes beyond overall
classification robustness to include assessments of visual-factor
robustness and 3D corruption robustness. We also explore addi-
tional perspectives that are crucial for real-world applications,
such as out-of-distribution (OOD) detection, which aims to filter
out inputs that are irrelevant to the task at hand. Furthermore, we
examine prediction uncertainty to determine whether the model
can classify images with calibrated prediction probabilities that
align with the empirical frequency of correctness [36], [37].
Additionally, we incorporate zero-shot retrieval tasks [9] and 3D
geometry correspondence matching to investigate the potential
of CLIP features.

III. EXPERIMENTAL SETUP
A. Models of Interest

Contrastive language-image pre-training models: we use 84
zero-shot CLIP models (CLIP) and 44 ImageNet fine-tuned
CLIP models (CLIP-FT). They have different visual encoders,
including slightly modified ResNet [38], ConvNeXt [39],
ViT [40] and EVA [41]. There are various training sources,
including LAION [42], WIT [1] and Conceptual Captions [43],
and multiple sizes of training datasets from 3 million to 2
billion. Note that in this extended paper, we include 25 recent
zero-shot CLIP models. They are trained on subsets of Com-
monPool [21], ranging from 14 million, 140 million to 1 billion.
CommonPool draws its data from the same source as LAION,
which is Common Crawl. These models allow us to validate
and expand our findings in a medium-to-low accuracy regime.
We also assess the performance of very recent CLIP models
which are trained on filtered high-quality pre-training datasets
using dataset curation techniques [44], [45]. To compare the
performance with LLaVA [18], we also include SigLIP [46].

For the CLIP-FT models, the vision encoder of CLIP is
fine-tuned on ImageNet-1 K. We consider different fine-tuning
algorithms, including directly fine-tuned on ImageNet-1K [47],
first fine-tuned on ImageNet-12 K, a subset of ImageNet-22 K
before fine-tuning on ImageNet-1 K, and also fine-tuned by
parameter-efficient fine-tuning methods [48], [49]. We use the
default prompt template provided by [1] for zero-shot CLIP
models unless specified.

Models compared: we use 127 ImageNet models with various
architectures, including Convolutional Neural Networks (e.g.,
ResNet [38] and ConvNeXt [39]), Vision Transformers (e.g.,
ViT [40] and Swin [50]) and all-MLP architectures [51], [52]
(e.g., MLP-Mixer [52]). Following [53], we divide them into
three categories: (i) Standard Models. This group consists of
models supervised on the ImageNet training set. (i) Contrastive
learning models. This category contains 8 models pre-trained
by contrastive learning. There are 6 training algorithms inves-
tigated, including InsDis [54], MoCo [55], SimCLR [56]; (iii)
Pre-trained on more data. This group contains models pre-
trained on a significantly larger dataset (e.g., ImageNet-21 K)
than the ImageNet training set. All the above models, including
CLIP, are publicly available on TIMM [57], OpenCLIP [58].
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Modern vision language models: This paper considers
LLaVA [18], which combines a frozen CLIP vision encoder
and a large language model (e.g., Vicuna) for general-purpose
visual and language understanding. In our study, we consider
six LLaVA models: the visual encoders used are CLIP-L/14-336
and SigLIP, paired with three large language models: Mistral-
instruct-V2 [59], Llama-Chat [60], and Vicuna-V2-7B [60],
resulting in a total of six LLaVA models. These models are
available on HuggingFace, as provided by [61].

B. Test Sets and Metrics

1. Robustness: We first pinpoint model failure patterns by
testing on ImageNet-X [14], which is a relabeling of ImageNet
validation by 16 naturally occurring factors. This work mainly
considers 10 factors labelled with a sufficient number of test
samples: Pose, Background, Pattern, Color, Smaller, Shape,
Fartial View, Subcategory, Texture and Larger. The metric is
accuracy, and high is better. In addition, we include cue-conflict
stimuli and Stylized-ImageNet [30] to measure the model bias
towards the shape or texture.

II. OOD detection: We use a large-scale OOD detection
benchmark which is built up on ImageNet: in-distribution (ID)
ImageNet v.s. {iNaturalist [62], SUN [63], PLACES [64], TEX-
TURE [65], and ImageNet-O [7] (OOD). Metrics are the area
under the receiver operating characteristic curve (AUROC) and
the higher is better; false positive rate (FPR@95) when the
true positive rate is at 95% and a lower score is better. To
evaluate OOD detection across diverse conditions, we employ
the NINCO dataset [66], which is ID-contamination-free and
comprises OOD classes from various existing OOD datasets.
We report mean AUROC and FPR@95.

II1. Calibration: We study ID and OOD datasets, where Ima-
geNet validation is ID dataset and OOD datasets are: ImageNet-
V2 [3], ImageNet-Rendition [5], ImageNet-Adversarial [7],
ImageNet-Sketch [4], ObjectNet [6] and ImageNet-Vid-
Robust [67]. Metrics are estimated calibration error (ECE) [68]
and negative log-likelihood (NLL). A lower ECE or NLL indi-
cates better calibration.

IV. Retrieval: We evaluate zero-shot retrieval performance
on Flick30K [69] and MSCOCO [70] following the evaluation
setup and splits from [71]. As in [1], we compute the cosine
similarity between image and text embeddings as the image-text
scores. When evaluating image retrieval, we rank the top-K
images for each text caption, and vice versa for text retrieval.
RecallQK is the metric with i = 5.

V. 3D Awareness: Two tasks are explored for this property:
correspondence estimation and robustness against 3D corrup-
tions. We use ScanNet [72], NAVI [73] and SPair-71K [74]
as the evaluation datasets for correspondence estimation. The
metric is recall. For robustness against 3D corruptions, we
use 3DCC [19], which applies 3D-related corruptions against
ImageNet-validation with 5 severity levels. The performance is
measured by accuracy.

VI. Comparison to LLaVA: We compare the performance of
CLIP and LLaVA on ImageNet-D [19], which consists of three
splits, Background, Texture and Material. CLIP is evaluated
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X-axes of all graphs: overall accuracy on ImageNet-X
Fig. 1. The models’ performance on the subset of ImageNet-X annotated with a given visual factor (y-axis) to their overall accuracy on the whole ImageNet-X

(z-axis). Each point represents a model. The z-axis and y-axis are probit transformed following [53]. The black dashed line represents the ideal robust models
whose performance on each visual factor is the same as the overall performance. The blue straight lines are fit with robust linear regression [75]. We include
models supervised on ImageNet-1 K, pre-trained on more data, contrastive learning models, CLIP models trained on two data distributions, and their fine-tuned

counterparts.

using standard zero-shot image classification protocol, while
LLaVA is assessed by standard visual question answering pro-
tocol. They are both required to classify images from four classes
and use accuracy as the measurement.

C. Analytical Methodology

Key Factors: to understand the underlying factors that influ-
ence the performance of CLIP models, we delve into six primary
aspects: 1) training distribution, evaluating the effect of data
source; 2) model architecture, looking into the potential effects
of different structural choices on model performance; 3) dataset
quantity, probing the interplay between the amount of data
available for training and the model’s efficiency; 4) contrastive
loss, understanding its specific role in training dynamics 5)
fine-tuning, 6) test-time prompt, assessing the impact of prompts
during the evaluation on model outputs.

We follow the analytical methodology of seminal work [53],
along with subsequent studies such as [8], [12], [76], to study the
influential factor. Within the performance trends observed across
all models, any factor causing a deviation from these trends is
influential. Notably, in our research, we mainly emphasize and
discuss such influential factors within each facet of our inves-
tigation. In Table I, we organize our evaluation into task-level,
model-level, and data-level dimensions, highlighting the main
insights observed in each.

IV. VISUAL FACTOR-LEVEL ROBUSTNESS

Our research builds upon previous findings on the robustness
of CLIP models and focuses on the potential failure types of
the model. Instead of solely measuring overall accuracy across
distributions, this section investigates the behavior of CLIP
models when faced with varying visual factors such as Pose,
Background, and Object Scale.

A. CLIP Models Generally Exhibit Better Factor-Level
Robustness Than Other Models

Factor-level effective robustness: In our study, we introduce
the concept of visual factor-level effective robustness based
on effective robustness [53]. It measures a model’s ability to
achieve higher accuracy on the subset annotated by a specific
visual factor compared to what is expected based on its overall
accuracy on ImageNet-X. Fig. 1 displays the accuracy on the
subset annotated by a specific visual factor relative to the overall
accuracy on ImageNet-X.

(1) CLIP models are generally more robust than other Ima-
geNet models on six out of ten visual factors: Fig. 1 highlights
several insights into the factor-level robustness of CLIP models.
First, we find that CLIP models are more robust than other
models on six out of ten visual factors, including Subcategory,
Smaller, Color, Shape, Texture, and Larger. Specifically, CLIP
models exhibit higher factor-level effective robustness than other

Authorized licensed use limited to: Australian National University. Downloaded on August 27,2025 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.



8284

models on each of these factors. Second, we observe that CLIP
models are less robust than other models on Pose and Partial
View. Third, CLIP models show a similar trend to other models
on the Background factor.

(2) Training distributions lead to different trends in CLIP mod-
els: The choice of training distribution impacts the factor-level
robustness of CLIP models. Specifically, we find that training on
different datasets (i.e., LAION and WIT) forms distinct trends on
each visual factor for CLIP, and there is no single training source
that always leads to higher factor-level robustness than another.
For instance, we observe that CLIP models trained on LAION
demonstrate higher robustness on Shape factor than those trained
on WIT, while this reverses for Background and Pose factors. The
results show a mixed observation on Large factor. Furthermore,
we further point out that CLIP models trained on different sub-
sets of LAION (LAINON-80 M, LAION-400 M, and LAION-
2B) follow the same trend. The above observations highlight the
importance of the choice of training source in determining not
only the overall accuracy but also the factor-level behaviors of
CLIP models. This suggests that factor-level robustness should
be considered when choosing the training source.

(3) CLIP fine-tuned models perform slightly better than mod-
els pre-trained with more data: We compare CLIP fine-tuned
models (CLIP-FT) with other models pre-trained on more data
and find that CLIP-FT shows improvement in overall accuracy
and robustness on visual factors of Subcategory, Shape, and Pat-
tern. However, no additional robustness gain is observed on other
factors. Moreover, CLIP-FT models outperform zero-shot CLIP
on variations such as Pattern and Partial View but perform lower
on factors like Texture and Larger. We speculate that standard
fine-tuning introduces spurious correlations [77]. This may lead
to a bias for CLIP towards specific visual properties, thereby
compromising factor-level robustness on some factors. It would
be intriguing to explore fine-tuning techniques to maintain or
improve the visual factor-level robustness of CLIP.

(4) Discussion on consistent trends across visual factors: All
models exhibit consistent trends across visual factors, despite
differences in architecture and training data. Specifically, all
models lie below the line y = x under Smaller, Shape, and Tex-
ture conditions, which involve changes to object geometry, scale,
and surface patterns. While such variations do occur in natural
datasets, they are neither explicitly annotated nor emphasized,
and thus may be underrepresented in the models’ learned feature
space. As a result, models tend to rely on statistically dominant
but fragile cues—such as canonical shapes, common textures,
or typical object sizes—rather than learning representations that
are robust to these factors. This behavior is consistent with the
concept of shortcut learning [78], where models exploit super-
ficial but predictive patterns that fail under distribution shift. In
contrast, performance on Background and Partial View remains
stable, likely due to the abundance of such variations in pretrain-
ing data, which encourages models to downweight context and
develop object-centric representations. The consistency across
models suggests these are not architecture-specific artifacts but
shared limitations shaped by training data and objectives.

(5) Pre-training analysis of factor-level coverage for training
data selection: Given a candidate training set, we aim to estimate
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Fig.2.  Shape bias analysis of CLIP, CLIP fine-tuned (CLIP-FT), models pre-
trained on more data (Pretrain), and standard models. Large points mean larger
models within the group. We observe that CLIP models are more shape-biased.

its coverage across key visual factors to anticipate potential
robustness gaps before model training. ImageNet-X provides
annotations across 16 visual factors, which supports pre-training
analysis. Specifically, we compute a prototypical feature for each
factor by averaging features from its annotated images using a
fixed pretrained backbone (e.g., ResNet-50). For each image
in the candidate dataset, we extract its feature and assign it to
the nearest factor prototype. By counting how many training
data are associated with each factor, we estimate the dataset’s
factor-level coverage. This lightweight and scalable analysis
enables factor-aware data selection before training models.

B. Texture Bias V.s. Shape Bias

CLIP exhibits a shape bias: We conducted experiments us-
ing the cue-conflict stimuli dataset [30] to assess the presence
of shape bias in the model’s predictions. Shape bias, in this
context, refers to the proportion of correct predictions that are
based on the object’s shape rather than texture or other features.
Fig. 2 visualizes the shape bias exhibited by different models,
grouped by training methods (zero-shot, CLIP fine-tuning, addi-
tional data pre-training, and standard training) and architecture
(transformer versus CNN). Our results show that, among the
four training methods, CLIP models exhibit a stronger shape
bias compared to the other groups. While previous research
has indicated that transformers show a greater shape bias than
CNNs [80], [81], we found that CLIP models with CNN-based
vision encoders also exhibit a significant shape bias. This sug-
gests that CLIP can align more closely with human visual per-
ception, which is widely acknowledged to be shape-driven [30],
[82], [83]. In the following, we provide a more detailed analysis
of the shape bias observed in CLIP models and explore the
implications of these findings.

(1) Model size does not solely explain the shape bias of CLIP:
We further observe that larger CLIP models do not necessarily
have higher shape bias than smaller-size ones. For example,
two models both trained on LAION-80 M, CLIP-ViT/L-14 have
0.54 shape bias, which is 0.09 lower than CLIP-ViT/B-32. This
implies that the shape bias of CLIP models cannot be attributed
solely to model size. Based on the above, we speculate that the
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TABLE II
SHAPE BIAS OF VARIOUS FINE-TUNED CLIP MODELS

Backbone FT methods Shape bias
Zero shot 0.575
Fine-tune on 1K 0.401
ViT-B/32 Contrastive FT 0.561
CoOp 0.549
Tip-Adapter 0.579
Zero shot 0.473
Fine-tune on 1K 0.345
ViT-B/16 Contrastive FT 0.448
CoOp 0.472
Tip-Adapter 0.487

We include CLIP models fine-tuned wusing different methods:

cross-entropy, contrastive loss [79], and parameter-efficient techniques
such as CoOp [48] and Tip-Adapter [49].

TABLE III
THE INFLUENCE OF INPUT RESOLUTION ON SHAPE BIAS WHEN FINE-TUNING
CLIP

Source Backbone Shape bias IN-Val SIN
ViT/H-14 (336/224) 0.42/0.51 0.89/0.88 0.28 /0.32
ViT/L-14 (336/224) 0.41/0.47 0.88/0.88 0.27/0.31
LAION ViT/B-16 (384/224) 0.35/0.43 0.87/0.86 0.23/0.25
ViT/B-32 (384/224) 0.33/0.45 0.85/0.83 0.21/0.22
ConvNeXt-B (384/224) 0.31/0.38 0.87/0.86 0.17/0.21
WIT ViT/L-14 (336/224) 0.39/0.45 0.88/0.88 0.24/0.30
ViT/B-16 (384/224) 0.35/0.41 0.87/0.86 0.22/0.23

We also report accuracy on ImageNet-Val(idation) and Stylized ImageNet (SIN). The
higher value in a model pair is in bold. With the same backbone architecture, the CLIP
model fine-tuned with a larger input resolution is more accurate on IN-Val but less
shape-biased and less accurate on SIN.

shape bias of CLIP may be attributed to its objective, which
involves training the model to associate text and image pairs.

(2) Larger input image resolution during fine-tuning of CLIP
results in a stronger bias towards texture: In Table III, we
observe that an input resolution during fine-tuning impacts
shape bias: increasing input resolution during fine-tuning leads
to better accuracy on ImageNet validation but also results in
more texture-biased models with lower accuracy on Stylized-
ImageNet. Across seven pairs of experiments and two training
sources, we observe this pattern consistently. Given that input
resolution is a crucial model dimension [84], [85], [86], it
would be insightful to study its effects on shape bias beyond
classification accuracy when devising scaling strategies.

(3) CLIP models tend to texture bias after fine-tuning: Our
study reveals that shape bias in CLIP weakens after fine-tuning
on ImageNet. Moreover, the fine-tuned CLIP models exhibit a
shape bias comparable to models that are pre-trained on larger
datasets. This finding is consistent when using a transformer and
CNN as the visual encoder. Moreover, these results illustrate
that fine-tuning discards the shape-biased property of zero-shot
CLIP, which may affect their overall effective robustness [30],
[87].

(4) Fine-tuning with contrastive loss maintains shape bias:
By default, the CLIP-FT models are trained with standard
supervised cross-entropy loss. To decouple the effect of fine-
tuning methods and data source, we use zero-shot CLIP with
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ViT-B/32 and ViT-B/16, and fine-tune them on ImageNet train-
ing set by standard cross-entropy, contrastive loss [79], and
parameter-efficient fine-tuning methods (CoOp [48] and Tip-
Adapter [49]). The shape bias extents are shown in Table II:
contrastive fine-tuning on ImageNet maintains the shape bias
of CLIP models. This indicates that ImageNet training data
might not be the primary cause of the shape-bias decrease. We
believe that the alignment mechanism between visual and textual
representations may play a fundamental role in shaping this bias.
This is supported by our observation that fine-tuning strategies
which preserve image—text embedding association tend to retain
or strengthen shape bias.

V. OUT-OF-DISTRIBUTION DETECTION

Zero-shot CLIP allows for a flexible definition of in-
distribution (ID) classes without re-training the model. Namely,
they can conduct zero-shot OOD detection [15]. The current
findings suggest that zero-shot CLIP models are competitive
with other state-of-the-art models [15], [88]. Based on this
finding, we conduct an extensive analysis to determine whether
the purported benefits persist across various training sources,
subsets, and network architectures. In the experiments, for zero-
shot CLIP models, we utilize maximum concept matching [15]
to detect OOD data. For models that are trained or fine-tuned
on ImageNet-1 K, we employ maximum softmax score [89] for
OOD detection.

(1) For CLIP models from the same source, their ID accuracy
correlates with OOD detection performance: Our study includes
CLIP models trained on two sources (WIT and LAION). Given
the same training source, our study, conducted across five chal-
lenging OOD scenarios, reveals a strong correlation between
the ID accuracy of zero-shot CLIP models and their OOD
detection performance (measured by AUROC and FPR@95).
This suggests that the zero-shot classification accuracy of CLIP
on ID data can serve as a reliable indicator of their OOD
detection performance. In contrast, such a trend is not as strong
for both standard models and more data-pre-trained models.
Furthermore, CLIP-FT models fine-tuned on ImageNet-1 K do
not exhibit such a clear correlation.

(2) Training source impacts the trend of CLIP: Upon closer
examination of the training distribution, we have observed that
the correlation trend between ID accuracy and OOD detection
performance is largely dependent on the training source. As
illustrated in Fig. 3, our research shows two distinct trends
between CLIP models trained on WIT and those trained on
LAION. Moreover, with the same ID accuracy, CLIP models
trained on WIT exhibit superior OOD detection performance
compared to their counterparts trained on LAION on three
OOD scenarios. This further indicates the importance of training
sources for CLIP.

(3) Fine-tuning procedure significantly influences the OOD
detection ability of CLIP: While fine-tuning generally improves
CLIP’s classification performance, this enhancement does not
necessarily translate to better OOD detection accuracy. Some
fine-tuned CLIP (CLIP-FT) models perform worse in OOD
detection compared to their zero-shot counterparts. Our analysis
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Fig. 3. OOD sample identification capability of models vs. ID dataset classification accuracy. The OOD detection ability is measured by AUROC (1) and

FPR@95 (). Each point represents a model. We plot the results on iNaturalist, PLACES and NINCO. The blue straight lines are fit with robust linear regression [75].
We report spearman’s rank correlation and R? to quantify the correlation strength between ID accuracy and OOD detection performance for zero-shot CLIP trained
on WIT and LAION. The x-axis and y-axis are probit transformed following [53]. We observe that training distribution has a greater impact than training dataset
quantity on the OOD detection performance of CLIP. Moreover, after additionally fine-tuning on ImageNet-12 K, CLIP models are generally better at detecting

OOD samples than those only fine-tuned on ImageNet-1 K.

distinguishes between two groups of CLIP-FT models based on
their fine-tuning procedures: one group is fine-tuned solely on
ImageNet-1 K, while the other undergoes additional fine-tuning
on ImageNet-12 K. We observe that this additional fine-tuning
step has a notable impact on OOD detection performance. As
shown in Fig. 3, despite not yielding significant gains in classifi-
cation accuracy, CLIP-FT models fine-tuned on ImageNet-12 K
consistently achieve better OOD detection across all tested sce-
narios. These findings suggest that the fine-tuning dataset plays
a critical role in enhancing OOD detection. Future work should
further explore alternative fine-tuning strategies that prioritize
OOD detection performance. Additionally, investigating the
effects of fine-tuning on datasets beyond ImageNet-1 K/21 K
presents an intriguing direction for improving the robustness of
CLIP models.

(4) Evaluation on NINCO [66]: To explore the OOD detec-
tion across diverse and challenging conditions, we use a new
benchmark NINCO for study. It consists of filtered samples
from various existing OOD benchmarks. Fig. 3 illustrates the
OOD detection performance on NINCO versus ID classification
accuracy on the ImageNet validation set. The observations are
consistent with those on five standard benchmarks: 1) for CLIP
models from the same source, their ID accuracy correlates with
OOD detection; 2) training source influences trends of CLIP; 3)
additional fine-tuning on ImageNet-12 K helps OOD detection
ability of CLIP. ImageNet-21 K offers broader semantic cover-
age than ImageNet-1 K, which may help bridge the gap between
pretraining data (e.g., LAION) and downstream tasks. As an
intermediate fine-tuning stage, it could help preserve model gen-
eralization, which may explain the improved OOD robustness
observed compared to direct fine-tuning on ImageNet-1 K.

VI. CONFIDENCE CALIBRATION

To better understand the well-calibrated phenomenon of zero-
shot CLIP models reported by [90], this section systematically
analyzes the calibration behavior of CLIP models under various
training conditions. Specifically, we examine the calibration
performance of CLIP models trained on different training dis-
tributions, varied training set sizes, and different architectures.
Furthermore, we also investigate the calibration performance of
CLIP models after fine-tuning.

A. Zero-Shot CLIP Models are Not Consistently More
Calibrated Than Other Models

(1) Training data distribution and quantity significantly af-
fect CLIP’s calibration: Fig. 4 illustrates the calibration of
CLIP models concerning classification accuracy under distri-
bution shifts. We find that models trained on different dis-
tributions or dataset sizes do not always group consistently.
For example, CLIP models trained on WIT and LAION tend
to form distinct clusters. Additionally, within subsets of the
LAION dataset, models with similar classification accuracy
can display varying levels of calibration. While CLIP models
are often praised for superior calibration compared to other
models [90], our analysis shows this is not always the case.
Notably, CLIP models trained on the LAION-80 M dataset
exhibit significantly lower calibration performance compared
to standard models. The superior calibration reported by [90]
is primarily based on CLIP models trained on WIT. How-
ever, when we expand the analysis to models trained on the
broader LAION dataset and its subsets, we observe more
variability.
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Fig. 4. Model calibration performance with respect to classification accuracy. We report results on in-distribution test set, ImageNet-V2-A, ImageNet-R, and

ImageNet-A. Two metrics are considered: ECE () and NLL ({), we also include calibration performance after calibration with temperature scaling. Each point
represents a model. We use colors to represent model groups. For zero-shot CLIP, we additionally use shapes to indicate training distribution and quantity. CLIP
models can have higher ECE than standard models. Also, the training distribution and quantity are the key factors influencing the calibration performance of CLIP
models. Moreover, temperature scaling reveals a consistent trend in CLIP models. After using temperature scaling for both CLIP and other models, CLIP models

follow a distinct trend from others and show better calibration performance.

(2) CLIP fine-tuned models show a trade-off between cal-
ibration and classification: As shown in Fig. 4, fine-tuning
CLIP models consistently results in higher classification ac-
curacy but increased calibration error across all test sets. Fur-
thermore, we did not observe that further fine-tuning CLIP
on ImageNet-12 K benefits calibration performance, which
contrasts with its positive impact on OOD detection. Inter-
estingly, other model groups, including those pre-trained on
larger datasets, do not show an obvious trade-off between
calibration and classification. Additionally, we observe that
few fine-tuned CLIP models achieve better calibration than
their zero-shot counterparts, even before applying calibration
techniques.

B. Temperature Scaling Highlights Well-Calibrated Properties
of Zero-Shot CLIP Models

Post-hoc calibration methods, such as temperature scal-
ing [36], are often employed to correct overconfidence or under-
confidence in model predictions. Following the protocol in [91],
we split the ImageNet validation set into two halves: one for
temperature scaling (ID calibration) and the other for testing. We
report results on both in-distribution (ID) and out-of-distribution
(OOD) test sets.

(1) Classification accuracy of CLIP models correlates with
calibration performance after temperature scaling: In Fig. 4,
we examine the effects of temperature scaling on both CLIP
and non-CLIP models, grouped based on the amount and source
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Fig. 5. Image/text zero-shot retrieval v.s classification accuracy on MSCOCO

and Flick30 K measured by Recall@5. Classification accuracy is predictive of
zero-shot retrieval capability. Moreover, four ConvNeXt-based CLIP models
trained with a limited range of random resize crop exhibit much lower retrieval
performance.

of their training data. After applying temperature scaling and
evaluating with the negative log-likelihood (NLL) metric, we
observe that models with higher classification accuracy gen-
erally show better calibration. Importantly, when temperature
scaling is applied to both CLIP and other models, zero-shot
CLIP models consistently outperform other models, including
fine-tuned versions, in calibration.

This pattern persists across various testing conditions, includ-
ing ID and OOD sets, with zero-shot CLIP models demonstrat-
ing superior calibration compared to other models. This trend
holds across both NLL and ECE metrics.

(2) ID calibration of CLIP models transfers to OOD test sets:
While prior studies [92] report in-distribution (ID) calibration
often fails to generalize under distribution shifts, our findings
reveal a promising result for CLIP models. After calibrating
CLIP models on the ID set, they exhibit improved calibration
on OOD test sets. For example, on ImageNet-A, CLIP models
exhibit lower calibration error after temperature scaling, a trend
not seen in other models. This suggests that CLIP models are rel-
atively easier to calibrate across diverse distributions, indicating
their potential for robust and reliable applications in real-world
settings.

VII. ZERO-SHOT RETRIEVAL

Since CLIP models are trained using contrastive loss to asso-
ciate text and image pairs, we evaluate their zero-shot retrieval
capability on the Flickr30K [69] and MSCOCO [70] datasets in
this section.

We have three major observations on the two datasets. First,
CLIP’s zero-shot retrieval capability correlates with its image
classification performance. Fig. 5 illustrates image and text zero-
shot retrieval (gauged by Recall@5) against their accuracy on
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ImageNet. We observe that classification ability is predictive of
their retrieval capability. Second, training distribution deviates
from the retrieval performance trend. Specifically, CLIP models
trained on WIT slightly deviate from the trend formed by CLIP
models trained on LAION, and the training quantity does not
affect the trend. Last, we observe four specific ConvNeXt-based
CLIP models significantly depart from the trend of LAION.
We notice that they are trained with a limited random resize
crop range (0.9, 1.0). This limited augmentation likely reduces
training view diversity, resulting in less variation in object scale
and context. In image-text retrieval, where the model must
extract consistent global representations that align well with
corresponding textual descriptions, this lack of variation can
hinder the learning of robust embeddings, ultimately affecting
retrieval performance. While this work does not consider such
training augmentations, it would be interesting to explore their
impact on retrieval.

VIII. 3D AWARENESS

CLIP models are trained using contrastive loss to associate
text and image pairs in feature space, but this training does not
explicitly incorporate 3D understanding, such as recognizing ge-
ometric concepts like multi-view consistency and depth. Despite
being trained on 2D data, recent studies suggest that models like
CLIP can still be effective in 3D-related tasks [16], [93], [94].
Building on this insight, this section evaluates the behaviors of
CLIP models in 3D-specific scenarios, particularly examining
their ability to capture 3D geometry and their robustness to 3D
distortions.

A. Correspondence Matching

Geometric Correspondence: Given two views of the same
object or scene, the objective is to identify pixels in both views
that correspond to the same location in 3D space. We evaluate
this using recall on the ScanNet [72] dataset for object-centric
correspondence and NAVI [73] for scene-centric correspon-
dence. Correspondence recall measures the percentage of correct
correspondences that fall within a defined threshold distance.
Following the protocol in [16], we categorize performance based
on the magnitude of transformation between view pairs.

Semantic Correspondence: This task generalizes geometric
correspondence by requiring matching of semantically similar
parts across different instances of the same object class. For
example, mapping the left paw of two different dogs. We use the
SPair-71K [74] dataset, with performance measured by recall.
Similar to geometric correspondence, we group results by the
degree of view variation. Fig. 6 groups CLIP models based on
their visual encoder architectures (CNN-based and ViT-based).
For comparison, we also include standard supervised models
such as ConvNeXt and ViT-L/16 (DeiT III) [95], which are
trained on ImageNet-22 K, alongside DINO-V2 [96].

Observations: First, ViT-based CLIP models exhibit weaker
performance across three datasets (ScanNet, NAVI, and Spari-
71 K), falling behind the supervised model (ViT-L-16), which
also uses a transformer-based architecture. In contrast, CNN-
based CLIPs consistently achieve higher recall scores than their
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Fig. 6. Correspondence matching performance (Recall 1) with respect to their viewpoint change. We report results on geometric correspondence matching

(ScanNet, NAVI) and semantic correspondence matching (Spair-71K). CLIP models are grouped by the architecture of the visual encoder into CNN-based and
ViT-based. We observe that CNN-based CLIP models consistently outperform ViT-based CLIP models, particularly in scenarios with larger viewpoint variations,
and achieve competitive results compared to supervised models like ConvNeXt and ViT-L-16.

ViT-based counterparts, particularly as viewpoint changes be-
come more extreme. Additionally, CNN-based CLIP models
show competitive performance when compared to supervised
CNN model ConvNeXt. This suggests the combined effect of the
visual encoder architecture and training objective, which plays
a crucial role in influencing CLIP’s ability to manage corre-
spondence matching. Second, our study extends the observation
of [16], showing CNN-based CLIP models not only perform
competitively with ViT-L/16 on NAVI but also match DINO-V2
on ScanNet. Note that, DINO-V2 emerges as the top performer
across all three datasets. These findings suggest that CNN-based
CLIPs generally exhibit stronger correspondence matching than
ViT-based CLIPs, especially in scenarios involving significant
viewpoint variations.

B. Robustness Against 3D Corruptions

We further evaluate the ability of CLIP models to han-
dle 3D-related corruptions using the 3D Common Corruptions
(3DCC) benchmark [17], which applies corruptions based on 3D
transformations. Unlike the common corruptions in [31], these
transformations consider the underlying geometry of the scene,
producing distortions that are more reflective of real-world con-
ditions. Sample images of corruptions are shown in the last row
in Fig. 7. For example, the fog gets denser further away from the
camera. In this study, we analyze six types of 3D-related cor-
ruptions, each with five severity levels, and examine only CLIP
models pre-trained on LAION to maintain consistency in train-
ing dataset distributions. Based on correspondence matching,
we categorize the CLIP models into CNN-based and ViT-based
groups.

CNN-based CLIP models demonstrate stronger robustness to
3D-related corruptions as corruption intensity increases: Fig. 7
shows the performance of ViT-based and CNN-based CLIP
models across various 3D-related corruptions (Fog, Near Focus,
Z-motion Blur, Flash, XY-motion-blur and Flash) at different
severity levels (Level 1, Level 3, and Level 5). For each row, the
slope of the CNN-based models is consistently steeper than that

of the ViT-based models, indicating that CNN-based models ex-
perience less degradation in performance as the clean ImageNet
validation accuracy increases. This suggests that CNN-based
models are more robust in maintaining accuracy under 3D
distortions.

Furthermore, as the corruption intensity increases (moving
from Level 1 to Level 5), the gap between the slopes, represented
by tan(Ag), widens. This increase highlights that the advantage
of CNN-based models becomes more pronounced under higher
severity of corruptions, particularly for challenging distortions
like Fog and Z-motion Blur. The growing slope difference in-
dicates that CNN-based models are increasingly more capable
of handling severe 3D corruptions compared to ViT-based mod-
els. These results reinforce the importance of visual encoder
architecture in achieving robustness across varying corruption
intensities, with CNN-based models consistently outperforming
ViT-based models, especially as the corruption severity esca-
lates. When considered alongside the results from the corre-
spondence matching, these findings underscore the pivotal role
that visual encoder architecture plays in enhancing robustness to
3D corruptions. Lastly, ViT-based CLIP models struggle with 3D
geometric understanding, whereas DINO models perform better.
This has implications for downstream multimodal models like
LLaVA [18], which typically rely on CLIP backbones. Combin-
ing DINO with CNN-based CLIP features could improve spatial
reasoning, as suggested in recent study [97].

IX. VISUAL AND LANGUAGE ENCODER INTERACTION: A
CLASSIFICATION PERSPECTIVE

Modern large multimodal models (LMMs), such as
LLaVA [18], typically use a frozen pre-trained visual encoder
from CLIP as their visual backbone, with instruction fine-tuning
applied to the linear projector and the language model compo-
nents. This raises an important question: how does the interac-
tion between a shared visual encoder and distinct language mod-
els affect the classification performance of LLaVA compared to
CLIP-like models?
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Fig.7. Robustness comparison of ViT-based and CNN-based CLIP models under varying 3D-related corruptions. The z-axis represents accuracy on ImageNet-Val,
while the y-axis represents accuracy on the corrupted dataset. We show the accuracy of ViT-based and CNN-based CLIP models across six types of 3D-related
corruptions: Fog, Near Focus, Z-motion Blur, Flash, XY-motion Blur, and Far Focus, evaluated at three severity levels (Level 1, Level 3, and Level 5). Each
column shows that CNN-based models consistently exhibit steeper slopes, indicating greater resilience with less performance degradation as ImageNet-Val
accuracy improves. As corruption intensity increases, the gap between the slopes, represented by tan(Ag), widens, particularly under severe conditions like Fog
and Z-motion Blur. This widening gap highlights the superior robustness of CNN-based models compared to their ViT-based counterparts, especially at higher
corruption levels. This reinforces the significant impact of visual encoder architecture on CLIP’s ability to handle 3D-related corruption. Sample images of Level
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Driven by this, we compare the classification accuracy of TABLE IV
. . . . COMPARED CLIP AND LLAVA MODELS ON IMAGENET-D
CLIP and LLaVA to investigate how the interaction between
the Shared VlSual enCOder and thelr dlStlnCt language mOdelS No. Category List Visual encoder  Type LLM Background Material Texture
influences overall performance. In this section, “LLaVA” and cp  CLIP - 0.90 092 0.95
« 0s . .. . . VIT-L/14-336 LLaVA Mistral-Instruct-V2 0.82 0.81 0.80
CLIP” refer to their training paradigms rather than specific T | LLaVA  Llama2-Chat 0.91 087 0.86
model implementations. We also include SigLLIP [46] as another I ResNet:50 LCLS;A Vieuna-V2-78 2:: 822 EZ;
representative of CLIP-like models. Sial1p.sO.14 LLAVA  Mistral-Tnstruct-v2 0.84 073 079
. . . 1eL IS0 LLaVA Llama2-Chat 0.93 0.91 0.93
Our evaluation is conducted on three splits of the ImageNet-D LLaVA  Vicuna.V2-7B 0.92 090 094
dataset [19]: Background, Texture, and Material. This dataset, CLIP - 0.23 024 0.21
. . . . . ViT-L/14-336 LLaVA Mistral-Instruct-V2 0.41 0.35 0.28
generated by a text-to-image diffusion model, poses significant oup (WIT)  LLaVA  Llama2-Chat 0.52 035 0.34
classification challenges. We adopt a VQA-style approach for 2 SigIPSO-14 e T
. . .. . . . (Webli) - 09 -0 -0
LLaVA’s classification, providing it with a category list per SielpSO.1q LLAVA MistralInstruct-v2 0.4 033 0.35
. . . . & LLaVA Llama2-Chat 0.60 0.47 0.46
image and prompting it to select the correct category. The list LLaVA  Vicuna.V2-7B 0.59 048 043
includes the ground truth (GT) category and three “failure” cLp - 0.14 0.14 013
. . . . . ViT-L/14-336 LLaVA Mistral-Instruct-V2 0.37 0.35 0.25
categories—incorrect categories ranked with the highest con- o (WIT)  LLaVA  Llama2-Chat 0.49 032 030
. . . . LLaVA Vicuna-V2-7B 0.57 0.45 0.42
fidence by a pretrained category selection model—ensuring a 3 VIT-L/14-336 CEIP o Y
. . A (WIT) - . . .
unique category list for each image. We evaluate the role of the SigLip-s0-14 LLAVA Mistablnstuctva 046 034 036
. . . LLaVA Llama2-Chat 0.62 0.48 0.48
category selection model using ResNet-50, CLIP-ViT-L/14-336, LLaVA  Vicuna V2.7B 0.59 052 044
and SlgLIP_SO_ 14. We include two visual backbones: CLIP-L/14-336 and SigLIP-SO-L and two language models for LLaVA:

. . Mistral-Instruct-V2, Llama2-Chat, and Vicuna-V2-7B.
To explore the interaction between the language and CLIP

vision encoders, we consider six LLaVA models, combining
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two types of visual encoders—CLIP-ViT-L/14-336 and SigLIP-
SO-14—and three language encoders: Mistral-Instruct-V2 [59],
Llama2-Chat [60], and Vicuna-V2-7B [60]. For a fair compari-
son, CLIPis given the same category list using the default prompt
template by [1] (e.g., “a photo of [category]”). LLaVA’s prompt
format is:

-~
What is the main object in this image-?
Choose from the following list:

A. [Ground truth class]

B.[Failure class 1]

C.[Failure class 2]

D. [Failure class 3]

Please answer the question using the
choice from the list.

(S

~

)

Observations: We report the results on ImageNet-D in
Table IV and summarize the observations as follows.

First, extending the findings of [19], which evaluate CLIP
(ViT/14) as a category selection model, we find that the inter-
actions between vision and language components in selection-
based networks vary significantly with task difficulty. When
the category list is easy for CLIP, LLaVA models using the
same visual encoder do not yield consistent improvements and
sometimes exhibit slight performance drops. In contrast, when
the category list is challenging for CLIP, LLaVA models using
the same visual encoder show substantial gains. For example,
in row 1, the most confused categories of ResNet-50 are easy
for CLIP, and LLaVA brings no improvement. Similarly, in row
2, when SigLLIP-SO-14 performs well, LLaVA shows a perfor-
mance drop. However, in the same row, when the category list
becomes difficult for SigL.IP-SO-14, LLaVA improves accuracy
by over 20% across three splits. A similar pattern is observed in
row 3 for CLIP (ViT-L/14-336) and its LLaVA counterpart. Since
LLaVA and CLIP share the same visual encoder, we speculate
that the observed gains arise when CLIP’s visual-text alignment
is weak—Ilikely due to ambiguous categories or limited pre-
training coverage. In such cases, LLaVA’s language model may
help disambiguate visual features by leveraging external knowl-
edge acquired during multimodal instruction tuning. Conversely,
when CLIP already handles the token comparison effectively, the
language model may over-interpret the visual input, occasionally
leading to reduced performance.

Second, the choice of language model (LLM) within LLaVA
significantly impacts classification performance. Vicuna-V2-7B
consistently outperforms Mistral-Instruct-V2, while the choice
of visual encoder also plays a critical role. LLaVA models
built on Sigl.IP-SO-14 outperform those using ViT-L/14-336,
echoing recent findings in the literature.

The above suggests that LLaVA’s performance gains are not
solely the result of architectural complexity or additional train-
ing data, but rather the interaction between the two. The model’s
effectiveness depends on how the language model, visual en-
coder, and learned projection layer work together in response
to varying input complexity. This indicates the importance of
designing vision-language models with careful attention to how
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Fig. 8. Influence of test-time prompts on CLIP’s visual-factor robustness.
We evaluate five CLIP models trained on WIT, represented by different colors
for architectures and different shapes. The dashed grey line represents robust
linear regression [75] based on the original CLIP-WIT models with 80 prompts.
Different prompt sets may influence classification performance but do not
significantly impact visual factor robustness because models still lie on the
original line.

TABLE V
INFLUENCE OF TEST-TIME PROMPTS ON CLIP’S CLASSIFICATION, OOD
DETECTION AND CALIBRATION

00D Detection Calibration

Backbone Pre-training dataset Classification Before-temp  After-temp

ECE () ECE ()

0.08 0.08
0.08 0.08
0.09 0.09
0.10 0.09
0.09 0.09
0.08 0.09
0.08 0.09

0.05 0.06
0.05 0.06
0.06 0.06
0.07 0.06
0.05 0.06
MPVR-Mistral 0.60 0.85 0.60 0.05 0.06
REAL 0.58 0.83 0.63 0.06 0.06
‘We evaluate CLIP models trained on WIT with ResNet-50 and ViT-B/16 as the visual encoder. We find that prompt sets
generated by large language models may improve zero-shot CLIP models’ classification accuracy, but it does not enhance
other OOD detection or calibration.

AUROC (1) FPR ({)

0.84 0.61
0.83 0.64
0.83 0.63
0.82 0.65
0.82 0.65
0.82 0.66
0.81 0.69
0.86 0.55
0.85 0.57
0.86 0.54
0.86 0.54
0.85 0.58

Accuracy (1)

0.41
043
0.44
0.42
0.43
043
0.42
0.57
0.59
0.60
0.59
0.60

1 Pompt
80 Prompts
CuPL
vDT
MPVR-GPT4
MPVR-Mistral
REAL

RN50

1 Pompt
80 Prompts
CuPL
vDT
MPVR-GPT4

ViT-B/16

components are integrated and how they respond under different
levels of visual-text alignment difficulty.

X. IMPACT OF TRAINING AND INFERENCE STRATEGY ON
MODEL ROBUSTNESS

A. Impact of Test-Time Prompts

In the previous analyses, we used the default prompt set
provided by [1]. Here, we investigate how varying test-time
prompts influence CLIP’s performance in out-of-distribution
(OOD) detection, visual factor robustness, and predictive uncer-
tainty. We experiment with five additional prompt sets: (1) a sin-
gle prompt (“a photo of a {label}”); (2) a set generated by GPT-3
following [98]; (3) a prompt set generated by GPT-4 [99] using
the chain-of-thought strategy [100] (VDT) [101]; (4) prompts
generated by GPT-4 (MPVR-GPT4) or Mistral (MPVR-Mistral)
with a target-task-oriented design [102]; (5) prompts generated
by GPT-4 with Retrieval-Augmented Learning (REAL) [103].
These prompts are tested across five CLIP models—RNS50,
RN50x 64, ViT-B/16, ViT-B/32, and ViT-L/14-336—all trained
on the WIT dataset.
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Fig.9.

Influence of fine-tuning algorithms on CLIP’s robustness, OOD detection, and predictive uncertainty. We fine-tune four CLIP models trained on WIT using

various algorithms. Different colors represent model architectures, and different shapes denote fine-tuning algorithms. The blue dashed line is fit with robust linear
regression [75] for original CLIP-WIT models, while the grey dashed line represents zero-shot CLIP trained on LAION. Results show that contrastive fine-tuning
improves overall classification accuracy but negatively impacts predictive uncertainty.

Fig. 8 and TableV summarize the effects of various prompt
strategies on CLIP’s classification, robustness, OOD detection,
and calibration. Using fewer prompts (e.g., a single prompt)
reduces classification accuracy but improves OOD detection
and calibration. Factor-level robustness, such as on the Pattern
task, remains largely unchanged regardless of prompt type, with
models following the original CLIP-WIT trend. Prompt sets
generated by large language models—including VDT, MPVR-
GPT4, MPVR-Mistral, and REAL—consistently improve clas-
sification accuracy, but show no clear advantage in OOD detec-
tion or calibration. These results highlight a key challenge: how
to design prompt strategies that simultaneously enhance other
objectives beyond classification accuracy only.

B. Effect of Fine-Tuning Procedures

In addition to standard fine-tuning methods (i.e:, cross-
entropy fine-tuning on ImageNet), we examine seven alterna-
tive fine-tuning strategies: contrastive fine-tuning (FLYP) as
introduced by [79], two robsut fine-tuning methods—WiSE-
FT [10] and LP-FT [104], and four parameter-efficient methods—
CoOp [48], Tip-Adapter [49], MaPLe [105] and Prompt-
SRC [106]. They are applied to fine-tune zero-shot CLIP models
pre-trained on WIT.

In Fig. 9, we present the performance of fine-tuned CLIP
models across visual factor robustness, OOD detection, and
calibration. The results reveal mixed effects across differ-
ent tuning methods. For visual factor robustness, CoOp and
PromptSRC preserve the properties of zero-shot CLIP, align-
ing with prior findings that test-time prompts have limited

TABLE VI
PERFORMANCE OF VARIOUS TRAINING PARADIGMS ON CLASSIFICATION, OOD
DETECTION, CALIBRATION AND 3D ROBUSTNESS

00D Detection Calibration

Training paradigm Classification 3D Robustness

Before-temp  After-temp

Accuracy (1) AUROC (1) FPR (}) ECE () ECE () Accuracy (1)
CLIP-ViT-B/16 0.59 0.85 0.57 0.06 0.06 0.34
BLIP-Base 0.51 0.76 0.70 0.07 0.08 0.27
SigLIP-ViT-B/16 0.68 0.89 0.50 0.08 0.05 0.38
ViTamin-Base 0.62 0.84 0.67 0.37 0.23 0.35
CLIP-ViT-L/14 0.72 0.88 0.47 0.06 0.05 0.46
BLIP-2 0.53 0.66 0.89 0.14 0.08 0.37
SigLIP-ViT-L/16 0.75 0.91 0.40 0.07 0.04 0.46

ViTamin-L-256px 0.79 0.89 0.49 0.21 0.17 0.53

‘We evaluate five vision-language training paradigms: CLIP, BLIP, BLIP-2, SigLIP and ViTamin. We find that no training
paradigm is the most performant on all considered safety-related objectives.

influence on robustness. FLYP and Tip-Adapter improve ro-
bustness against the Pattern factor but reduce it under Larger
visual changes. LP-FT maintains robustness across several fac-
tors, while WiSE-FT slightly weakens it on Larger. On OOD
detection, most methods—including FLYP, LP-FT, WiSE-FT,
and PromptSRC—enhances both accuracy and detection per-
formance, with LP-FT showing strong generalization as their
models lie above the zero-shot CLIP-WIT trend. For calibration,
FLYP increases calibration error, while CoOp, Tip-Adapter, and
PromptSRC maintain well-calibrated predictions. LP-FT and
WIiSE-FT increase error slightly before temperature scaling but
recover calibration performance afterward, outperforming FLYP
in uncertainty estimation.

These findings suggest that while fine-tuning can improve
certain aspects of CLIP’s performance, achieving a balance
between classification accuracy, OOD detection, and predictive
uncertainty remains a challenge, highlighting the need for further
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TABLE VII
COMPARISON OF CLIP TRAINED WITH FILTERED PRE-TRAINING DATA ON SIX TASKS

OOD Detection

Calibration Visual factor robustness

Backbone Pre-training dataset  Data Filtering Classification

Retrieval 3D robustness

Before-temp ~ After-temp Larger Shape Color
Accuracy (1) AUROC (1) FPR (}) ECE () ECE ()  Accuracy (1) Accuracy (1) Accuracy (1) Recall@5 (1)  Accuracy (1)
LAION-400M No 0.61 0.84 0.65 0.13 0.05 0.67 0.56 0.63 0.82 0.32
MetaCLIP-400M Yes 0.67 0.85 0.62 0.09 0.08 0.75 0.61 0.67 0.83 0.35
ViT-B/16 LAION-2B No 0.64 0.85 0.64 0.13 0.05 0.69 0.60 0.67 0.84 0.34
DFN-2B Yes 0.70 0.88 0.52 0.12 0.07 0.80 0.66 0.73 0.85 0.40
CommonPool-L No 0.43 0.73 0.86 0.06 0.07 0.45 0.46 0.58 0.64 0.19
CommonPool-L-CLIP Yes 0.53 0.77 0.81 0.11 0.07 0.61 0.53 0.56 0.72 0.26
LAION-400M No 0.68 0.86 0.59 0.17 0.06 0.75 0.64 0.70 0.85 0.38
MetaCLIP-400M Yes 0.76 0.89 0.50 0.09 0.06 0.74 0.67 0.74 0.85 0.45
VIT-L/14 LAION-2B No 0.72 0.88 0.52 0.11 0.04 0.82 0.66 0.72 0.87 0.42
DFN-2B Yes 0.78 0.91 0.39 0.07 0.04 0.85 0.74 0.79 0.88 0.50
CommonPool-XL No 0.72 0.87 0.54 0.03 0.04 0.72 0.65 0.70 0.80 0.43
CommonPool-XL-CLIP Yes 0.75 0.88 0.54 0.08 0.03 0.74 0.67 0.74 0.84 0.46
LAION-2B No 0.64 0.85 0.64 0.12 0.05 0.69 0.59 0.67 0.72 0.35
ConvNeXt-Base .
LAION-Aesthetic Yes 0.65 0.85 0.63 0.14 0.05 0.71 0.62 0.67 0.68 0.33

For the classification task, we report average accuracy on ImageNet validation, ImageNet-V2-A, ImageNet-S, ObjectNet, ImageNet-A, ImageNet-R and ImageNet-Vid. We report averaged AUROC and FPR on NINCO, iNaturalist,
DTD, Place, SUN and ImageNet-O. We report ECE before and after calibration. The calibration set is ID-val and test set is the same as OOD generalization. For visual factor robustness, we evaluate Larger, Shape and Color. We
use averaged recall@S5 to measure text-to-image and image-to-text retrieval on MSCoCo and Flick30K. For 3D robustness, we use accuracy to metric their mean performance on six 3D-related corruptions with severity level 5.
The best performance for each architecture is in green . We find that data curation technique is an effective method for enhancing model performance beyond classification.
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Fig. 10.  Visual-factor robustness of different training paradigms from CLIP.
We evaluate five vision-language training paradigms: CLIP, BLIP, BLIP-2,
SigLIP and ViTamin. The dashed blue line represents robust linear regres-
sion [75] based on the original CLIP-WIT models. Different training paradigms
effectively impact visual factor robustness.

research into fine-tuning strategies that can address all of these
objectives.

C. Extending to Different Training Paradigms

We have expanded our analysis beyond CLIP to include four
additional vision-language training paradigms: (1) BLIP [79],
(2) BLIP-2 [107], (3) SigLIP [46], and (4) ViTamin [108]. We
summarized the results in Fig. 10 and Table VI We observe
that different training paradigms yield trade-offs across robust-
ness, OOD detection, calibration, and 3D performance. SigL.IP
achieves the best overall balance, with strong OOD detection,
low calibration error, and competitive 3D robustness.ViTamin-
L-256px leads in classification accuracy and 3D robustness but
suffers from poor calibration. In addition, BLIP and BLIP-2
consistently underperform across most metrics. These results
reinforce our main claim: no single paradigm excels universally,
underscoring the need for multi-dimensional evaluation beyond
accuracy alone.

D. Robustness Evaluation of Dataset Curation

High-quality training sets are crucial for developing CLIP
models, and as a result, recent research has increasingly empha-
sized dataset curation (DC) to create these datasets [21], [44],

[45]. In this work, we extend the evaluation of DC techniques
to robustness-related tasks, including out-of-distribution (OOD)
detection, calibration, visual factor-level robustness, and 3D
corruption.

To ensure a clear and fair comparison, we control the ar-
chitecture of the CLIP models and categorize the methods
based on their pretraining dataset sources. We consider four DC
techniques: 1) CommonPool [21], which uses a trained CLIP
model as a filter; 2) MetaCLIP [45], which leverages metadata
for curation and balancing of raw web-sourced data; and 3)
DFN-2B [44], which employs a network trained on high-quality
datasets for filtering; 4) Aesthetic [109], which is filtered using
perceptual hashing for deduplication and an aesthetic score
threshold.

Table VII shows that DC techniques consistently improve per-
formance in classification, OOD detection, visual factor robust-
ness, and 3D robustness—particularly for transformer-based
models. However, their impact on calibration is limited. We also
evaluate CNN-based CLIP models trained on LAION-Aesthetic
and observe that while dataset filtering improves classification
and robustness, it shows limited benefits for retrieval, cali-
bration, and 3D robustness. These observations suggest that
the effectiveness of filtering strategies depends on both model
architecture and the specific evaluation objective, emphasizing
the need for multi-dimensional assessment beyond classification
accuracy.

XI. CONCLUSION AND DISCUSSION

Our research contributes to the ongoing discussion regarding
the robustness and capabilities of CLIP models, particularly
in response to visual factor robustness, OOD detection, the
reliability of uncertainty estimation, zero-shot retrieval capa-
bilities, and 3D awareness. To achieve these insights, we per-
formed comprehensive experiments and comparative analyses,
systematically evaluating CLIP models against diverse model
families. Through an in-depth exploration of critical factors—
including training sources, contrastive learning objectives, net-
work architecture, fine-tuning strategies, and test-time prompt

Authorized licensed use limited to: Australian National University. Downloaded on August 27,2025 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.



8294

variations—our findings provide substantial insights into the
unique advantages CLIP models offer.

Discussion on Dataset Overlap: Given that CLIP models are
pretrained on large-scale web-crawled datasets such as LAION-
5B, potential overlap with evaluation benchmarks is a valid
concern. Prior work suggests that such overlap is unlikely to
significantly affect our findings. For classification robustness,
LAION-5B paper [21] and OpenAl [1] report only isolated
cases where overlap impacts performance, and do not view it
as a major threat to result validity. For OOD detection, Bitter-
wolf et al. [66] show that overlapping class semantics between
pretraining (e.g., IN-21 K) and test sets (e.g., NINCO) does
not substantially alter detection performance. For calibration,
since our evaluation datasets are shared with classification and
focus on relative model comparison, any sample-level overlap
is unlikely to influence conclusions. Moreover, our emphasis on
relative trends, rather than absolute scores, further mitigates this
concern.

This work leaves open many interesting and promising di-
rections and we discuss a few. First, we offer an analysis
of LLaVA and demonstrate that its large language model can
assist in classification where CLIP’s text and visual tokens are
misaligned. Future work could explore other modern large vision
models (LVMs), such as BLIP-3 [110] and Otter [11], to deepen
this analysis. Further exploration into the interaction between
language models and CLIP’s visual encoder could also yield
valuable insights. We see our analysis as a starting point. Second,
our study includes two academic training sources—WIT and
LAION—for CLIP. Future work should investigate whether our
findings generalize to other training sources, such as datasets
generated by Stable Diffusion [111], to advance our understand-
ing of multi-modal dataset design. Lastly, our analysis reveals
a critical need for more refined fine-tuning strategies tailored to
CLIP models, aimed at improving both classification accuracy
and robustness.
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