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Abstract

Neural Radiance Fields (NeRF) have demonstrated ex-
ceptional capabilities in creating photorealistic novel views
using volume rendering on a radiance field. However,
the intrinsic assumption of straight light rays within NeRF
becomes a limitation when dealing with transparent or
translucent objects that exhibit refraction, and therefore
have curved light paths. This hampers the ability of these
approaches to accurately model the appearance of refrac-
tive objects, resulting in suboptimal novel view synthesis
and geometry estimates. To address this issue, we pro-
pose an innovative solution using deformable networks to
learn a tailored deformation field for refractive objects. Our
approach predicts position and direction offsets, allowing
NeRF to model the curved light paths caused by refraction
and therefore the complex and highly view-dependent ap-
pearances of refractive objects. We also introduce a regu-
larization strategy that encourages piece-wise linear light
paths, since most physical systems can be approximated
with a piece-wise constant index of refraction. By seam-
lessly integrating our deformation networks into the NeRF
framework, our method significantly improves rendering re-
fractive objects from novel views.

1. Introduction
Refractive objects—transparent objects with signifi-

cantly different indices of refraction to air, like glass and
plastics—are ubiquitous in the real world, and capturing
their appearance accurately is essential for achieving visual
realism in virtual and augmented reality (VA/AR) applica-
tions. Light refraction is the change in the direction of a
light ray upon entering a different medium at an oblique
angle. It is caused by one side of the wavefront changing
speed before the other, since light travels at different speeds
in different media. This intrinsic property gives rise to com-
plex light paths through refractive objects, making their ap-
pearance challenging to model compared to light transmis-
sion in scenes with only opaque objects.

NeRF [28] and related models [2, 3, 53] are highly ef-
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Figure 1. Casting a ray through a scene with an opaque or trans-
parent (refractive) object. (a) Existing NeRF methods learn the
density field based on light transport along straight paths. (b)
However, when light paths intersect refractive objects, they may
curve (dashed line), depending on the angle of incidence. Volume
rendering with a straight-path assumption may assign color and
density information to incorrect positions in the 3D volume. This
limitation poses challenges for accurately learning the density and
radiance field. (c) To address this issue, we propose to bend the
light rays by predicting position and direction offsets for sample
points along the rays. This approach enables us to model refracted
light paths and obtain improved novel view synthesis and geome-
try estimation results for refractive objects.

fective at generating photorealistic novel views. This is
achieved by leveraging volume rendering on a radiance
field, which is parameterized by a neural network that maps
the position and view direction to the corresponding density
and view-dependent color of the volume element. Existing
NeRF methods learn the density field under the assump-
tion that light is transported along a single straight line,
following the emission and absorption model (Fig.1 (a)).
However, this assumption falls short when dealing with
the unique characteristics of refractive objects, which in-
herently bend the light rays (Fig.1 (b)). Applying straight
light rays for volume rendering in such cases may lead to
color information being assigned to the wrong 3D position.
This inherent limitation prevents conventional NeRF tech-
niques from modeling the intricate, highly view-dependent
appearance of refractive objects effectively. Consequently,
this leads to suboptimal results in novel view synthesis and
geometry estimation of refractive objects.

Forward rendering of refractive objects is well under-
stood, leveraging principles like Snell’s law of refraction.



Existing methods for modeling refractive objects often em-
ploy controlled setups for acquiring light paths [12, 13, 17,
21, 24, 31, 43, 52, 56, 57]. For instance, Lyu et al. [24] uti-
lize turntables and static structured backlights for geome-
try reconstruction. Alternatively, environment matting tech-
niques estimate a background deformation caused by the re-
fractive object, enabling seamless compositing onto diverse
backgrounds [10, 11, 63, 65]. Recent advances in NeRF-
based refractive object modeling have considered curved
light paths [4, 36, 55]. Pan et al. [36] compute curved paths
using the Eikonal equation [18] with known refractive index
and object geometry. NEMTO [55] assumes an infinitely
distant background, linking the final radiance of intersect-
ing camera rays solely to their exiting direction. Using this
assumption, NEMTO utilizes an MLP to only predict the
exiting direction of each ray for color prediction.

In contrast, this work addresses the challenge of novel
view synthesis for refractive objects without making as-
sumptions about known geometry, refractive index, con-
trolled setups, or infinitely distant background. To enhance
the novel view synthesis capabilities of NeRF, we introduce
an approach centered around learning a deformation field
specifically tailored for refractive objects, enabling the flex-
ible bending of light rays. Our approach involves two de-
formation networks that predict shifts in position and di-
rection for sample points along the rays. This leads to a
new light path that accurately captures the curved trajectory
caused by refraction, as depicted in Fig 1 (c). With this ca-
pability, NeRF can effectively model the intricate and view-
dependent appearance of refractive objects. It is important
to note that without knowing the geometry and refractive
index, it is challenging to accurately determine the ray de-
formation of this highly under-constrained problem. To ad-
dress this, we introduce a collinearity regularization term,
justified by the prevalence of piece-wise constant refractive
indices in natural scenes. By seamlessly integrating defor-
mation networks into the standard NeRF framework, our
approach achieves significant improvements in novel view
synthesis for scenes containing refractive objects.

2. Related Work
Novel View Synthesis. The objective of novel view syn-
thesis is to generate images of a scene from arbitrary cam-
era viewpoints. Existing methods in this field commonly
employ either a geometric or image-based 3D representa-
tion to facilitate the rendering of novel views. Mesh-based
approaches, for instance, utilize surface representations
and have been employed for modeling both Lambertian
(diffuse) [54] and non-Lambertian scenes [6]. Moreover,
volume-based representations, including voxel grids [19,
20] and multi-plane images [27, 41, 64], are utilized to
achieve this goal. Recently, coordinate-based neural net-
works have gained popularity due to their flexibility in rep-

resenting scenes without the constraints of fixed voxel grids.
They take coordinates as input and outputs various spa-
tial properties (e.g., occupancy [26, 35, 40], signed distance
fields [37, 59, 62], or radiance [28]). NeRF [28] uses a
multi-layer perceptron (MLP) to represent a scene as a radi-
ance field and generates high-quality rendered novel views.
Many extensions of NeRF have been proposed, such as ac-
celeration [7, 8, 14, 32], scene scale [2, 3, 25, 34], ambiguity
reduction [1–3], and specular surface rendering [15,49,53].
This work models the intricate view-dependent appearance
of refractive objects, considering light ray bending caused
by refraction and internal reflection.

Dynamic Neural Radiance Fields. To reconstruct a 3D
dynamic scene from monocular RGB camera footage, there
are various attempts to extend NeRF to dynamic scenes.
One prominent technique involves the utilization of a
learned deformation field that maps the coordinates from
each input image onto a canonical template coordinate
space. For instance, warping-based methods [38,39,42,51]
learn how the 3D structure of the scene is deformed and
then warp the 3D radiance field of each frame to the canon-
ical frame. Moreover, flow-based methods utilize flow es-
timation techniques to infer correspondence of 3D points
between frames [22, 58]. This work does not aim to rep-
resent dynamic scenes with deformation fields. Instead, we
introduce deformation networks to learn the bending of rays
for a better representation of the refractive object.

Refractive Object Modeling. To recover the 3D geom-
etry of refractive objects, several works build up con-
trolled setups to obtain more information, including polar-
ization [13, 17, 30], tomography [52], moving point light
sources [12, 31], light field probes [56], and gray-coded
patterns [21, 24, 43, 57]. For example, Li et al. [21]
use gray-coded backlight and turntable to learn Sign Dis-
tance Function (SDF) that achieves refraction-tracing con-
sistency. Han et al. [16] reconstruct transparent objects with
an unknown refractive index by partially immersing them in
a liquid, which alters the incident light path. The object sur-
face is then recovered by triangulating these modified light
paths. Li et al. [23] assume known environment illumina-
tion and refractive index. They incorporate rendering and
cost volume layers to model reflection and refraction, opti-
mizing surface normals for precise point cloud reconstruc-
tion. The technique of environment matting [10, 11, 63, 65]
effectively captures the refraction of environmental light by
transparent objects. It estimates the deformation caused by
the refractive object on the background, thereby facilitating
seamless compositing onto a variety of backgrounds. Other
works aim to reconstruct objects inside the refractive and
reflective transparent object [44, 50].

Recent advances in novel view synthesis have explored
curved light paths through refractive objects [4, 36]. Pan et



al. [36] calculate bending paths using the Eikonal equa-
tion [18] with known refractive index and object geometry
to model refraction. On the other hand, Bemana et al. [4]
tackle the challenge without assuming a known refractive
index, using multi-step ODE solvers to learn the refrac-
tive field. Moreover, NEMTO [55] presumes an infinitely-
distant background, where the final radiance of each camera
ray intersecting the refractive object solely depends on its
exit direction. Leveraging this, NEMTO employs an MLP
to predict the outgoing ray direction, facilitating color com-
putation for each ray. Unlike the above approaches, our
work does not assume known geometry, refractive index, or
an infinitely-distant background. We propose deformation
networks that predict light paths (both direction and posi-
tions) traversing the transparent object. Furthermore, for
enhanced modeling of reflective and refractive objects, the
multi-space NeRF (MS-NeRF) [29] decomposes Euclidean
space into virtual sub-spaces. In contrast, our method takes
a more direct route by explicitly bending rays to effectively
handle refraction.

3. Modeling Refraction by Ray Deformation
Given N RGB images of a scene that may contain one

or more (partially) refractive objects, this work aims to es-
timate the underlying geometry and render images from
novel camera views. The primary challenge is that a re-
fractive object adopts its appearance from the surrounding
environment through the refraction and (internal) reflection
of light rays that traverse the object. However, in the con-
text of NeRF modeling, the conventional assumption is that
light rays propagate in straight paths. To address this limita-
tion, our work proposes a ray deformation network, which
facilitates the flexible bending of rays through the refrac-
tive object without assuming a known geometry, and an
appropriate regularization strategy to constrain the model.
This allows our NeRF-like model to accurately represent the
complex view-dependent appearances that arise from the re-
fraction and reflection properties of transparent objects.

3.1. NeRF Preliminaries

NeRF [28] utilizes a continuous field of volume ele-
ments that emit and absorb light to model both the appear-
ance and geometry of a scene. At any given 3D position
x ∈ R3, NeRF calculates the density σ(x) and geomet-
ric representation g(x) by employing a spatial MLP Ψs:
[σ(x),g(x)] = Ψs(γ(x)), where γ denotes the positional
encoding. Additionally, NeRF incorporates a directional
MLP Ψv to predict the emitted light color c(x,d) by a par-
ticle located at position x from direction d. The directional
MLP takes the geometric representation g(x) and the view
direction d as inputs: c(x,d) = Ψv(γ(d),g(x)).

To render each pixel of a camera view using NeRF, the
two MLPs are queried at sample points xi = o+tid along a

ray. This ray originates from the camera’s center of projec-
tion o with direction d. The MLPs return densities {σi} and
colors {ci} corresponding to the sampled points. They are
then alpha-composited using numerical quadrature to deter-
mine the final color of the pixel associated with the ray:

Ĉ(o,d) =
∑

i
wici , (1)

where wi = e−
∑

j<i σj(tj+1−tj)
(
1− e−σi(ti+1−ti)

)
.

The parameters of the two MLPs are optimized by min-
imizing the difference between the predicted color Ĉ(o,d)
and the ground truth color Cgt(o,d) of each pixel, which is
extracted from the input image. The following photometric
loss function expresses this optimization:

Lc =
1

|R|
∑

(o,d)∈R

∥Ĉ(o,d)−Cgt(o,d)∥2 , (2)

whereR represents all the training rays, each denoted by an
ordered pair (o,d).

Predicting Normals. According to Snell’s law, the re-
fracted ray direction depends on input direction, interface
normal and refractive index. We thus use normal vectors
for our ray deformation networks. Following [5, 47, 53],
a spatial MLP Ψn is employed to predict a normal vector
ni for each position xi along the ray. It takes as input the
geometric feature representation: ni = Ψn(g(xi)). The
predicted normal vector ni is supervised by the underlying
density gradient normal n′

i along the ray:

Ln =
∑

i
wi∥ni − n′

i∥2, (3)

where n′
i = −∇σ(xi)/∥∇σ(xi)∥ and wi is the weight of

the ith sample along the ray as defined in Eq. 1.

3.2. Ray Deformation Network

3.2.1 Ray Bending

In the case of a refractive object, if we have prior knowl-
edge about its physical material and geometry, it is straight-
forward to perform analytical ray tracing to determine the
path of the light. However, obtaining such detailed infor-
mation about the refractive object is often challenging and
not readily available. Additionally, environmental matting
methods [10, 63, 65] can capture the reflection and refrac-
tion of transparent objects but are constrained by the re-
quirement of controlled environments or complex camera
setups with structured background lighting [21, 24, 43]. In
light of the above limitations, we propose a ray deformation
network that facilitates the flexible bending of light rays, en-
abling effective handling of both refraction and reflection.
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Figure 2. Flowchart of our framework for modeling refractive objects. Our proposed framework combines the conventional NeRF networks
(spatial MLP and color MLP) with two deformation networks for position and direction. The model deems any camera ray that intersects
the cuboid, which is assumed to cover all refractive objects, to be potentially deformable. Each sample point xi on a deformable ray
is processed by the deformation networks, taking its position xi, view direction di, and normal vector n as inputs to compute offsets
in position ∆xi and direction ∆di. From the updated position x̂i and direction d̂i vectors, the spatial MLP computes density σi and
geometric representation gi. Then, the color MLP takes as inputs gi and d̂i and outputs color ci. After calculating densities and colors for
all sample points along the deformable ray, they are integrated following volumetric rendering to obtain the rendered pixel color ĉ. The
photometric loss Lc (Eq. 1) is used for supervision. To discourage non-physical ray deformations, collinearity regularization Ll (Eq. 5) is
introduced. Lastly, a near-camera density penalty Ld (Eq. 6) is applied to remove artifacts associated with refractive objects.

Deformable Rays. We select light rays that interact with
the refractive object as deformable rays, and our ray defor-
mation network is tailored specifically to handle these rays.
Given the lack of prior knowledge about the precise geom-
etry of the refractive object, we opt to use a cuboid to ap-
proximate and localize the region occupied by the refractive
object. By determining whether a ray intersects the cuboid,
we identify it as a deformable ray. To acquire the cuboid, we
project roughly annotated bounding boxes of objects from
the 2D training images back into 3D space, utilizing the
known camera poses. While we use a cuboid for simplicity,
more sophisticated techniques like the visual hull based on
the segmentation masks [20, 23, 46] could be employed to
achieve a more precise localization.

Flexible Sampling for Ray Bending. We grant the sam-
ple points along the deformable rays additional flexibility
to better model the complex appearance of the refractive
object. As shown in Fig. 2, we leverage a direction de-
formation network Ψd and a position deformation network
Ψp to manipulate the direction and position of individual
sample points along the deformable ray. Formally, for each
point x sampled after the first intersection of a deformable
ray with the cuboid, the direction deformation network Ψd

predicts its rotation shift ∆d, and the position deformation
network Ψp predicts the position offset ∆x. The inputs of
Ψd and Ψp are the encoded position γ(x), encoded view
direction γ(d), and encoded normal vector γ(n) at every
sample point x:

∆d← Ψd(γ(x), γ(d), γ(n)),

∆x← Ψp(γ(x), γ(d), γ(n)).
(4)

With the displacements of ∆x and ∆d, we transform the
original sample point to its new position x̂ = x+∆x associ-
ated with new direction d̂ = (d+∆d)/∥d+∆d∥. Having
obtained the updated position x̂ and direction d̂, the stan-
dard NeRF networks (spatial MLP and color MLP) compute
the corresponding color c and density σ. Once densities
and colors are computed for all sample points along the de-
formable ray, they are integrated using volumetric rendering
principles (Eq. 1). For non-deformable rays, the deformable
networks are inactive. Standard NeRF networks directly use
original positions and view directions to predict colors and
densities for volumetric rendering.

3.2.2 Learning the Model

Our deformation networks are designed without relying
on assumptions about known geometry or refractive index,
which makes them versatile for modeling various refractive
objects. However, the absence of prior knowledge poses a
challenge in determining how the rays bend, impeding the
networks from learning reasonable position and direction
offsets. This, in turn, impacts the learning of the radiance
field. To overcome this challenge, we introduce two reg-
ularization strategies tailored to enhance both the stability
and accuracy of the ray deformation process.

Collinearity Regularization. In nature, the refractive in-
dex at each point in a scene is piece-wise constant to a good
approximation. By Snell’s law, this means that refracted
light rays are piece-wise linear. We draw inspiration from
this physical phenomenon and introduce collinearity regu-
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Figure 3. Illustration of collinearity regularization. It encourages
adjacent sample points to be collinear after deformation so that the
bent ray prefers piece-wise linear configurations.

larization. It encourages the ray to be as linear as possible,
avoiding jagged paths, for all rays that intersect the cuboid,
i.e., those that are labeled as deformable. As shown in Fig-
ure 3, for the set of K deformed sample points x̂r

i on each
ray r in the training setR, we apply collinearity regulariza-
tion between each point and its neighbors using the cosine
distance, given by (for Z = (K − 2)|R|)

Ll =
1

Z

∑
r∈R

K−1∑
i=2

(
1−

(x̂r
i − x̂r

i−1)

∥x̂r
i − x̂r

i−1∥

T
(x̂r

i+1 − x̂r
i )

∥x̂r
i+1 − x̂r

i ∥

)
. (5)

Near-Camera Density Penalty. The appearance of re-
fractive objects varies significantly with the view direc-
tion: slightly changing the view angle can lead to signifi-
cantly different colors for the same surface position. Such
multi-view inconsistency introduces learning difficulties for
NeRF. Fig. 4 illustrates how this affects standard NeRF
models: they generate outliers near the camera to minimize
the photometric error during training. While this behav-
ior helps NeRF reproduce the training images, it stymies
its ability to generalize, introducing artifacts in the ren-
dered novel views. Inspired by this observation, we in-
troduce regularization to discourage such near-camera arti-
facts —a free-space penalty. For the set of K sample points
{xi = o + tid}Ki=1 on each ray in the training set R, we
apply a density penalty given by

Ld =
1

K|R|
∑

(o,d)∈R

K∑
i=1

σi1(ti < δ), (6)

where δ is the distance along the ray up to which the penalty
is applied. Empirically, we use δ = 0.3 in the experiments.
Note that, this regularization has shown helpful in few-shot
NeRF [33,60], and this work further demonstrates its effec-
tiveness in reducing artifacts caused by refractive objects.

Overall Loss. We base our model on the Nerfacto
model [48], a well-designed NeRF method that combines

Training View

Novel View

Figure 4. Illustration of near-camera outliers. For refractive ob-
jects, NeRF tends to generate outliers near the camera (highlighted
with ellipses) in order to minimize the photometric loss. However,
this leads to inaccurate novel views. We propose penalizing near-
camera density to remove such outliers.

advances from several published works, and apply our de-
formation networks to bend the deformable rays. The over-
all loss function of our framework combines color loss
Lc (Eq. 2), normal regularization Ln (Eq. 3), collinear-
ity regularization Ll (Eq. 5), and the near-camera density
penalty Ld (Eq. 6) :

L = Lc + λ1Ln + λ2Ld + λ3Ll, . (7)

The first two items are inherited from Nerfacto, while the
latter two are introduced by this work. The coefficients λi

correspond to the weight assigned to each loss term.

4. Experiments
4.1. Setup

Datasets. We collect data for four real scenes with differ-
ent refractive objects (Cup-A/B/C/D), with views sampled
(approximately) on a hemisphere. Each dataset is randomly
split into training, validation, and testing sets with 90, 20,
and 90 images, respectively. Camera poses are computed
using COLMAP, and the image size is 960 × 540. Addi-
tionally, we use two real datasets (Glass and Ball) from Be-
mana et al. [4] and follow their dataset split to report results.
Sample images from each scene are shown in Figure 5.

Compared Methods and Implementation Details. For
our evaluation, we compare our proposed approach to three
baseline NeRF methods: TensoRF [9], Instant-NGP [32],
and Nerfacto [48]; as well as three refraction-specific meth-
ods: MS-NeRF [29], SampleNeRFRO [36], and Eikonal
Fields [4]. SampleNeRFRO [36] assumes that the geome-
try of the refractive object and its refractive index is known,
and so can only be evaluated on datasets where these are
available. We do not compare with NEMTO [55], since it
assumes a known background or environment map at an in-
finite distance, and so cannot be used with real data. We



Table 1. Quantitative evaluation on the test set of six real datasets of refractive objects. We provide a comprehensive analysis of perfor-
mance metrics on the test set, encompassing PSNR (↑), SSIM (↑), and LPIPS (↓), across various NeRF models: TensoRF [9], Instant-
NGP [32], MS-NeRF [29], Nerfacto [48], Eikonal Fields [4], SampleNeRFRO [36], and ours. Our method demonstrates consistently better
performance across all six datasets. †Assumes known geometry/masks and refractive indices, so cannot be evaluated on the Cup datasets.

Model
Ball [4] Glass [4] Cup-A Cup-B Cup-C Cup-D

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

TensoRF 21.41 0.735 0.187 20.49 0.695 0.226 25.96 0.856 0.184 23.12 0.823 0.230 27.57 0.888 0.1671 24.13 0.825 0.212

Instant-NGP 21.56 0.790 0.121 21.42 0.748 0.148 23.43 0.842 0.189 22.76 0.827 0.184 26.03 0.894 0.127 23.51 0.838 0.176

Nerfacto 21.67 0.797 0.113 22.14 0.774 0.121 23.24 0.846 0.168 21.37 0.808 0.209 25.69 0.893 0.114 22.67 0.835 0.177

MS-NeRF 22.35 0.810 0.105 21.83 0.781 0.119 27.43 0.890 0.113 24.83 0.859 0.142 28.84 0.910 0.099 25.51 0.870 0.137

SampleNeRFRO† 21.49 0.679 0.270 21.11 0.630 0.317 – – – – – – – – – – – –
Eikonal Fields 21.64 0.699 0.217 20.92 0.663 0.262 26.11 0.832 0.214 25.27 0.818 0.242 24.62 0.811 0.282 24.33 0.777 0.256

Ours 23.30 0.822 0.092 23.54 0.795 0.103 29.33 0.894 0.104 27.04 0.867 0.128 30.11 0.916 0.093 27.09 0.871 0.137

utilize the implementations in Nerfstudio [48] to run each
NeRF model on all datasets, except for Pan et al. [36] and
Eikonal Fields [4], where we use their implementations.

Our method is built upon Nerfacto, and we adopt its de-
fault hyper-parameters for consistency: λ1 is set at 0.001.
We set λ2 and λ3 in Eq. 7 to 0.01, by a coarse search on
the validation set, for the near-camera density penalty and
piece-wise linear regularization, respectively. For the defor-
mation network, we use a simple 3-layer MLP architecture,
similar to the normal-predicting MLP in Verbin et al. [53].

Evaluation Metrics. To evaluate the synthesis results,
we employ three visual quality metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS).
A higher value of PSNR and SSIM indicates better visual
quality, while a lower value of LPIPS signifies better per-
ceptual similarity to the ground truth.

4.2. Results

Quantitative Evaluation. In Table 1, we provide a thor-
ough evaluation of our proposed novel view synthesis tech-
nique across an assortment of six refractive datasets. The
results indicate that our method performs favorably com-
pared to other NeRF models.

First, traditional NeRF models, like TensoRF, Instant-
NGP, and Nerfacto, are grounded in the assumption of lin-
ear ray paths, which restricts their ability to accurately ac-
count for the intricate refraction behavior of transparent ob-
jects. This limitation becomes evident in their compara-
tively diminished performance across all six datasets, com-
pared with our approach. For instance, on the Ball dataset,
our method improves performance by 1.89 over TensoRF,
1.74 over Instant-NGP, and 1.63 over Nerfacto in terms of
PSNR, with similar gains with respect to the other met-
rics. Second, our method performs competitively with three
NeRF models that are designed for refraction (i.e., MS-

NeRF [29], Eikonal Fields [4], and SampleNeRFRO [36]).
While these approaches are better able to model the refrac-
tive objects than the traditional NeRF methods, our method
exhibits the best quantitative performance.

We think that the improvements of our method over other
NeRF models can be attributed to the integration of defor-
mation networks, which enable a more suitable represen-
tation of ray refraction. The aforementioned comparative
analysis collectively indicates the promising potential of our
method in novel view synthesis for refractive objects.

Qualitative Evaluation. A qualitative evaluation of our
proposed approach alongside baseline models is presented
in Figure 5. It becomes apparent that conventional methods
(Instant-NGP, and Nerfacto) yield visually noisy renderings
of refractive objects, characterized by the presence of nu-
merous tiny particles within the object region. MS-NeRF
demonstrates smoother results on some datasets (e.g., Cup-
A and Cup-C), but is inconsistent (e.g., Ball and Cup-B). In
comparison, our method reliably achieves the best results
across all datasets. Eikonal Fields showcases high-quality
results on Ball and Cup-C, yet falters in effectively model-
ing the remaining datasets. In contrast, the refractive ob-
ject regions in our renderings appear smoother and cleaner
across all datasets. It is, however, worth noting that while
our approach shows promise in accurately modeling refrac-
tion, there exists room for improvement in terms of preserv-
ing fine-grained details. Supplementary techniques such as
diffusion models [61] or discriminators [45] may enhance
detail plausibility in our results.

A qualitative comparison of 3D reconstruction is also
shown in Figure 6, where we compare our method with
MS-NeRF and Nerfacto. It shows that our method provides
more complete and smoother reconstructions of refractive
objects compared to the other methods. This indicates that
our ray deformation approach allows the network to better
model the geometry of refractive objects.
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Figure 5. Qualitative comparison of novel view synthesis with different NeRF models on refractive objects. Visual results are displayed
across six distinct refractive datasets. The sequence, from left to right, displays the ground-truth novel view, followed by renders from our
method, Eikonal Fields, MS-NeRF, Instant-NGP, and Nerfacto. Each row corresponds to a different dataset. Our method outperforms other
models in handling refraction effects, resulting in smoother and cleaner novel view synthesis outcomes for refractive objects.

Ablation Study. Building upon the baseline method Ner-
facto, our method adds the ray deformation networks and
two regularization strategies. To verify that each compo-
nent has a salutary effect on the performance of the model,
we perform an ablation study on the six refractive datasets

and report the average results in Table 2. First, we remove
the near-camera density penalty (A) and observe a signifi-
cant performance drop, indicating that translucent material
incorrectly placed near the camera is a significant mode of
error for refractive objects. Second, we remove the ray de-
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Figure 6. Visualisation of 3D shape reconstruction across three
refractive objects. We present a qualitative comparison among
our method, MS-NeRF, and Nerfacto. Our results illustrate that
our approach produces comparatively more comprehensive and
smoother reconstructions of refractive objects.

Table 2. Ablation study. We report the average metrics across the
six refractive object datasets. A significant drop in performance is
observed when removing any of the components, indicating that
each contributes to the model’s effectiveness.

Method PSNR (↑) SSIM (↑) LIPIS (↓)

Nerfacto 22.80 0.826 0.150

# Ours 26.73 0.861 0.109

A w/o near-camera penalty 24.14 0.837 0.143

B w/o ray deformation 23.51 0.836 0.133

C w/o collinearity regularization 25.05 0.821 0.172

formation networks entirely (B), and observe that this has
the biggest effect on model performance. Third, we remove
the collinearity regularization (C), allowing the deformation
networks to predict non-physical jagged or high curvature
light trajectories. This has a smaller effect on performance.

Case Study I: Modeling Translucent Colored Objects.
Our model accounts for the color contributions arising from
sample points within translucent objects. This enables our
model to handle varying levels of transparency. To verify
this, we change the color of the liquid inside the object. In
Figure 7 (a), we use two datasets: one with green liquid and
the other with deep red liquid. We show that our method
can handle both cases and achieve good novel view synthe-
sis. Moreover, our approach consistently outperforms MS-
NeRF and Nerfacto in terms of test set PSNR.

Case Study II: Modeling Partially Refractive Objects.
Our method is not restricted by the assumption that the ob-

Ground Truth Ours MS-NeRF

Test Set PSNR: 27.30 Test Set PSNR: 25.79(a)

(b)

Nerfacto

Test Set PSNR: 23.14

Test Set PSNR: 26.67 Test Set PSNR: 24.90 Test Set PSNR: 21.33

Test Set PSNR: 27.51 Test Set PSNR: 26.40 Test Set PSNR: 22.40

Figure 7. Case studies. (a) Modeling translucent, colored objects.
Our model is able to inherently handle a range of transparency
levels and colors. (b) Modeling partially refractive objects. Our
model has the flexibility to model transparent objects that contain
opaque components, viewed under refraction.

ject of interest is entirely transparent. This flexibility en-
ables our method to handle scenarios where opaque ob-
jects are contained within a transparent medium. To ex-
plore this potential, we introduce a dataset where a pencil is
submerged in a cup of water. As depicted in Figure 7 (b),
our method yields high-quality results, outperforming MS-
NeRF by 1.11 in terms of test set PSNR.

5. Conclusion
This work addresses the intricacies associated with the

complex, view-dependent characteristics of transparent ob-
jects, encompassing the bending of light rays due to refrac-
tion. In contrast to conventional assumptions of straight
rays, our approach employs a deformation network to learn
the refractive behavior of light rays as they pass through a
scene. We also introduce a regularization strategy that en-
courages the light paths to be piece-wise linear, since real-
world scenes can be well-approximated by piece-wise con-
stant refractive indices. By incorporating the deformation
process into NeRF modeling, our approach achieves high-
quality novel view synthesis and geometry estimation for
scenes with refractive objects.

Acknowledgment We thank all reviewers and ACs for their
constructive comments. This work was generously supported
through research collaboration with RIOS Intelligent Machines.



References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, pages 5855–5864, 2021. 2

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, pages 5470–
5479, 2022. 1, 2

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-
aliased grid-based neural radiance fields. arXiv preprint
arXiv:2304.06706, 2023. 1, 2

[4] Mojtaba Bemana, Karol Myszkowski, Jeppe Revall Frisvad,
Hans-Peter Seidel, and Tobias Ritschel. Eikonal fields for
refractive novel-view synthesis. In ACM SIGGRAPH 2022
Conference Proceedings, pages 1–9, 2022. 2, 3, 5, 6

[5] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance
decomposition from image collections. In ICCV, pages
12684–12694, 2021. 3

[6] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 425–
432, 2001. 2

[7] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-
cient geometry-aware 3d generative adversarial networks. In
CVPR, pages 16123–16133, 2022. 2

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, pages
333–350, 2022. 2

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 5, 6

[10] Guanying Chen, Kai Han, and Kwan-Yee K Wong. Tom-net:
Learning transparent object matting from a single image. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 9233–9241, 2018. 2, 3

[11] Guanying Chen, Kai Han, and Kwan-Yee K Wong. Learning
transparent object matting. International Journal of Com-
puter Vision, 127(10):1527–1544, 2019. 2

[12] Tongbo Chen, Michael Goesele, and H-P Seidel. Mesostruc-
ture from specularity. In CVPR, pages 1825–1832, 2006. 2

[13] Zhaopeng Cui, Jinwei Gu, Boxin Shi, Ping Tan, and Jan
Kautz. Polarimetric multi-view stereo. In CVPR, pages
1558–1567, 2017. 2

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, pages
5501–5510, 2022. 2

[15] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. Nerfren: Neural radiance fields with reflections.
In CVPR, pages 18409–18418, 2022. 2

[16] Kai Han, Kwan-Yee K Wong, and Miaomiao Liu. Dense re-
construction of transparent objects by altering incident light
paths through refraction. International Journal of Computer
Vision, 126:460–475, 2018. 2

[17] Cong Phuoc Huynh, Antonio Robles-Kelly, and Edwin Han-
cock. Shape and refractive index recovery from single-view
polarisation images. In CVPR, pages 1229–1236, 2010. 2

[18] Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Mar-
cus Magnor, and Hans-Peter Seidel. Eikonal rendering: Effi-
cient light transport in refractive objects. ACM Transactions
on Graphics (TOG), 26(3):59–es, 2007. 2, 3
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