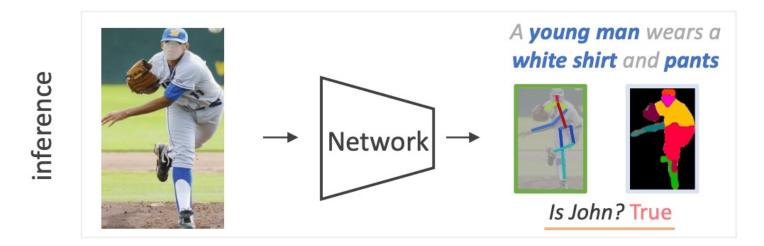


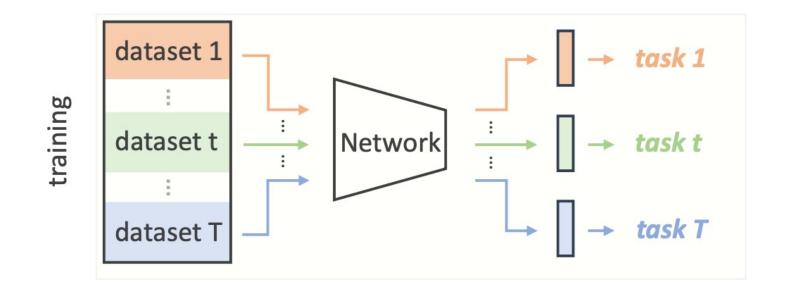
NEC Laboratories America


Split to Learn: Gradient Split for Multi-Task Human Image Analysis

Weijian Deng¹ Yumin Suh² Xiang Yu² Masoud Faraki² Liang Zheng¹ Manmohan Chandraker^{2,3}

¹Australian National University ²NEC Labs America ³University of California, San Diego

Multi-Task Human Image Analysis


Multi-task network provides a rich explanation of person-body images, including <u>attributes</u>, pose, part masks, and <u>identity</u>

Multi-Task Human Image Analysis

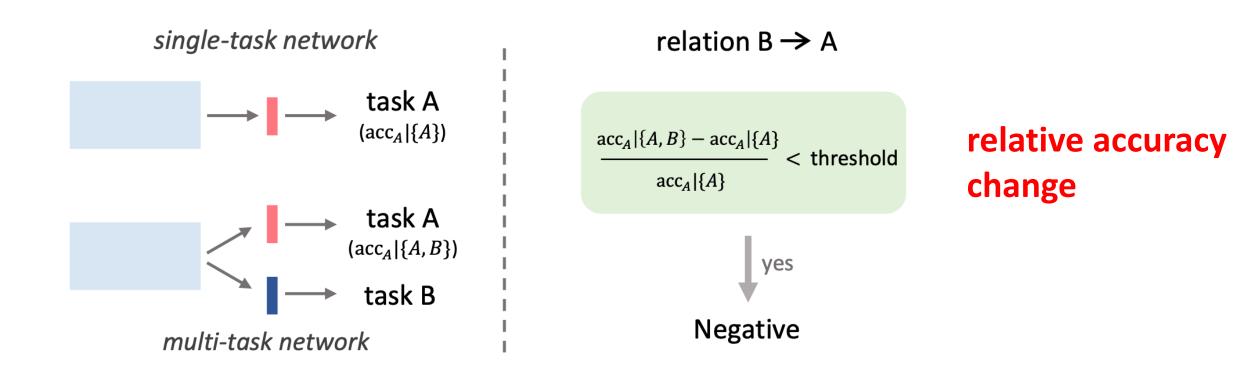
Practical setting

Multi-task networks are trained across datasets and each dataset does not necessarily have exhaustive annotations for all tasks

Task Conflict

Multi-task learning can encounter task conflicts

- ✓ Identity-variance vs. identity-invariance
 Attribute recognition vs. Pose estimation
- Pose-variance vs. Pose invariance
 Pose estimation vs. Person re-identification

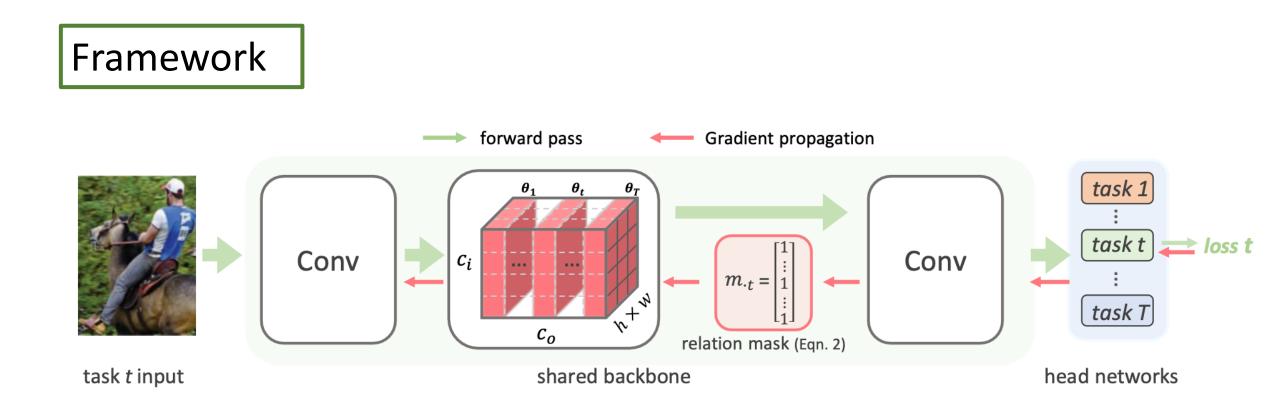

Task Conflict

Multi-task learning can encounter task conflicts

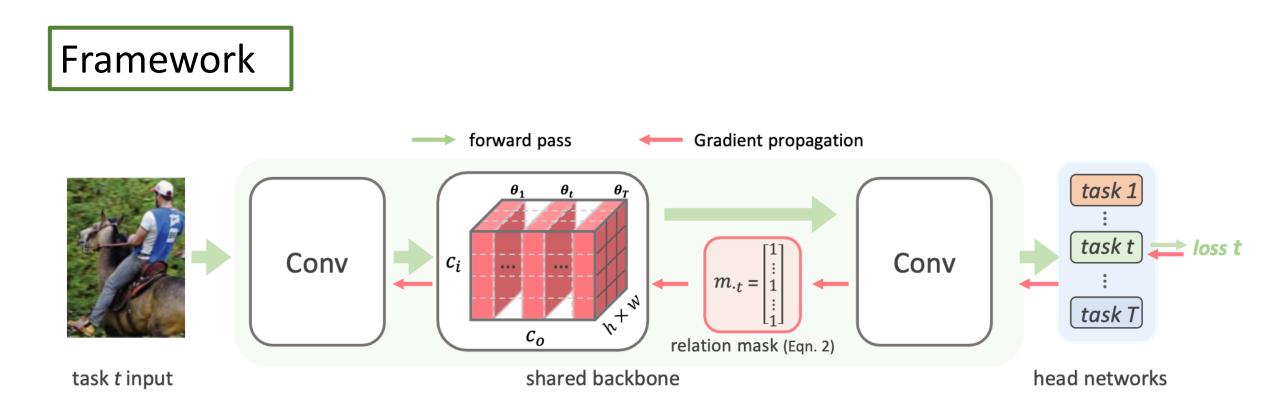
• **Our goal** is to train a unified model that solves multiple human-related tasks while avoiding the task conflict

better accuracy-efficiency trade-off

Asymmetric Inter-task relation definition

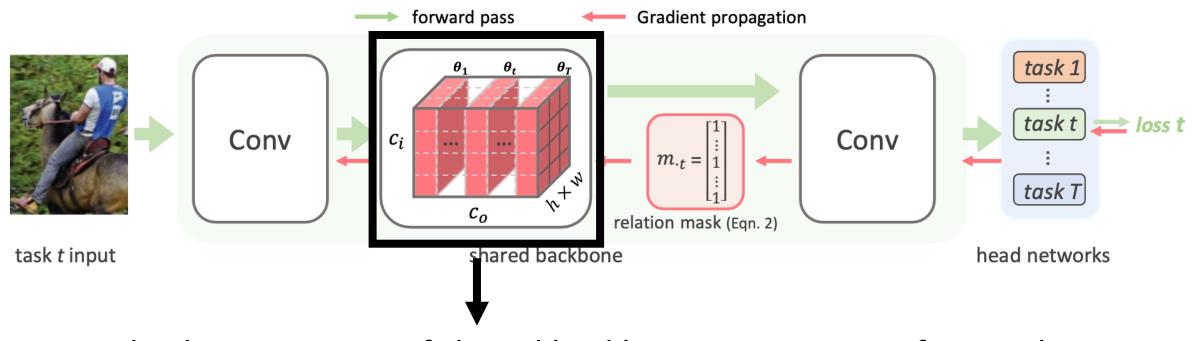


Asymmetric Inter-task relation definition

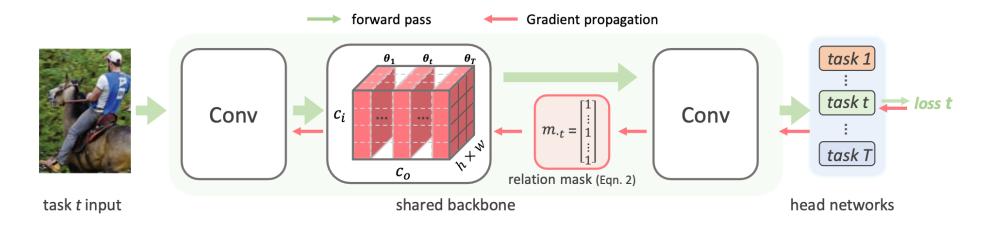

	Rela				
	Attribute ReID Pose Parsing				
Attribute	_	-2.16%	-1.47%	-9.87%	-
NCI1/	-2.05%	_	-1.36%	-16.22%	Threshold: -0.01
.u Pose Lu Parsing	-0.77%	-0.86%	—	0.00%	
Parsing	-0.91%	-0.97%	0.11%	—	_

Asymmetric Inter-task relation definition

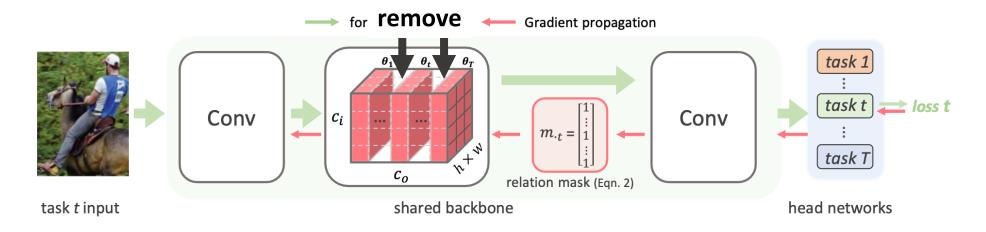
]	Performa			
		Attribute	ReID	Pose	Parsing	
With	Attribute	_	\downarrow	\downarrow	\downarrow	- -
	ReID	\downarrow	_	\downarrow	\downarrow	Negative relation
raine	Pose	_	_	_	_	
Tra	Parsing	—	_	—	—	



Multi-head framework for multi-task learning


Gradient split is only conducted during the backward process No extra forward cost and No network change

Inter-task Relationship based Gradient Update


We divide parameters of shared backbone into T groups for T tasks

Inter-task Relationship based Gradient Update

GradSplit updates parameter θ_t using the gradients from only a subset of tasks $\{t'\}$, where the relationship task $t' \rightarrow t$ is not negative, while discarding gradients from the other tasks.

Inter-task Relationship based Gradient Update

GradSplit updates parameter θ_t using the gradients from only a subset of tasks $\{t'\}$, where the relationship task $t' \rightarrow t$ is not negative, while discarding gradients from the other tasks.

Experiment: Four-Task Analysis

Methods	Backbone	ReID	Attribute	Pose	Parsing	Δ_m	#Param	
Wiethous	Ducktonic	mAP (†)	MA (†)	Mean (†)	mIoU (†)	(†)	(M) ↓	(G) ↓
Single-task Networks	ResNet-50-GN	81.1	78.0	88.2	45.6	+0.0	123	41
(Upperbound)	ResNet-50-BN	83.0	78.3	88.4	45.4	—	123	41
Single-task Networks	ResNet-18-GN	74.9	76.9	87.0	42.4	_	63	24
(Baseline)	ResNet-18-BN	74.2	74.2	87.4	41.9	_	63	24
RCM [15]		54.9	68.1	69.0	36.1	-21.9	141	80
SFG [2]	ResNet-50-GN	64.4	73.9	71.8	34.8	-17.0	52	20
GradNorm [4]	Kesinel-JU-UIN	56.1	77.7	68.4	28.5	-23.1	52	18
MTAN [21]		42.7	77.4	86.0	41.9	-14.7	75	40
ASTMT [26]	ResNet-50-TBN*	50.6	78.9	87.0	43.6	-10.6	82	42
	ResNet-50-BN	63.2	76.3	78.9	39.8	-11.9	52	18
Multi-head Baseline	ResNet-50-TBN*	78.1	77.2	86.8	41.8	-3.7	52	41
	ResNet-50-GN	79.3	76.4	86.1	42.7	-3.3	52	18
GradSplit (Ours)	ResNet-50-GN	80.1	77.8	86.4	43.9	-1.8	52	18

Experiment: Four-Task Analysis

Methods	Backbone		Attribute MA (†)		Parsing mIoU (†)	(本)	#Param (M)↓	#FLOPs (G)↓
Single-task Networks	ResNet-50-GN	81.1	78.0	88.2	45.6	+0.0	123	41
(Upperbound)	ResNet-50-BN	83.0	78.3	88.4	45.4		123	41
Single-task Networks	ResNet-18-GN	74.9	76.9	87.0	42.4	_	63	24
(Baseline)	ResNet-18-BN	74.2	74.2	87.4	41.9		63	24

GradSplit achieves a better accuracy-efficiency trade-off

-				_				
MTAN [21]		42.7	77.4	86.0	41.9	-14.7	75	40
ASTMT [26]	ResNet-50-TBN*	50.6	78.9	87.0	43.6	-10.6	82	42
	ResNet-50-BN	63.2	76.3	78.9	39.8	-11.9	52	18
Multi-head Baseline	ResNet-50-TBN*	78.1	77.2	86.8	41.8	-3.7	52	41
	ResNet-50-GN	79.3	76.4	86.1	42.7	-3.3	52	18
GradSplit (Ours)	ResNet-50-GN	80.1	77.8	86.4	43.9	-1.8	52	18

Experiment: Three-Task Analysis

Pose + Attribute + ReID

Methods	Backbone	$\frac{\text{Attribute}}{\text{MA}(\uparrow)}$	·	Pose Mean (†)		#Param (M)↓	
Single-task	R50-GN R18-GN	78.0 76.9	81.1 74.9	88.2 87.0	+0.0	85 39	
Cross-stitch [27] NDDR [10]	R18-GN	76.3 76.1	72.7 69.3	86.8 86.8	-4.7 -6.2	38 42	GradSplit is more effective than other methods
GradNorm [4] MTAN [21]	R50-GN	74.0 77.4	54.5 50.0	85.1 85.5	-13.8 -14.0		
Multi-head GradSplit	R50-GN	75.9 77.6	76.5 80.2	86.3 86.3	-3.5 -1.3	38 38	

Experiment: Large Capacity Backbone

Methods	Backbone $\frac{\text{Attr ReID Pose Parsing }\Delta_m \text{ #Param}}{\text{MA mAP Mean mIoU}} (\uparrow) (M)$	GradSplit outperforms the Single-task networks
Single-task	R50-GN 78.0 81.1 88.2 45.6 +0.0 123	Single task networks
Task-specific L4	R50-L4 76.8 78.2 86.4 43.5 -2.9 96	GradSplit achieves the
DropGrad (p=0.50) 77.9 80.2 86.4 42.2 -2.7 72	best accuracy-efficiency
Multi-head	R50-GN+77.1 80.4 87.8 46.9 +0.1 72	trade-off
GradSplit	78.2 81.6 87.9 47.4 +1.1 72	

Experiment: Which Layer?

Me	thods	Pose	Attribute	ReI	D	Parsing	
	lious	Mean	MA	Rank-1	mAP	mIoU	Last Layer is best choice
Mu	lti-head Basel.	84.9	75.5	86.2	64.7	38.0	
lit	Layer 4	85.4	77.1	89.2	71.4	39.1	Different tasks might share
SpJ	Layer 3-4	85.0	77.1	88.0	68.0	38.3	the common features in
GradSplit	Layer 2-4	85.2	77.0	87.4	67.6	38.0	previous layers
Ğ	Layer 1-4	84.6	77.0	87.6	66.9	36.6	picvious idycis

Experiment: Random Drop?

Me	thods	Pose	Attribute	ReI	D	Parsing	
1,10		Mean	MA	Rank-1	mAP	mIoU	
Mu	lti-head Basel.	84.9	75.5	86.2	64.7	38.0	
GradSplit	Layer 4 Layer 3-4 Layer 2-4 Layer 1-4	85.4 85.0 85.2 84.6	77.1 77.1 77.0 77.0	89.2 88.0 87.4 87.6	71.4 68.0 67.6 66.9	39.1 38.3 38.0 36.6	Randomly drop gradients does not help
	opGrad (<i>p</i> =0.50) opGrad (<i>p</i> =0.75)		74.0 73.9	85.8 85.3	64.3 63.7	36.3 36.8	

Thank you

