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Abstract

Leveraging the model’s outputs, specifically the logits, is a common approach to
estimating the test accuracy of a pre-trained neural network on out-of-distribution
(OOD) samples without requiring access to the corresponding ground-truth la-
bels. Despite their ease of implementation and computational efficiency, current
logit-based methods are vulnerable to overconfidence issues, leading to prediction
bias, especially under the natural shift. In this work, we first study the relation-
ship between logits and generalization performance from the view of low-density
separation assumption. Our findings motivate our proposed method MANO that
(1) applies a data-dependent normalization on the logits to reduce prediction bias,
and (2) takes the L, norm of the matrix of normalized logits as the estimation score.
Our theoretical analysis highlights the connection between the provided score
and the model’s uncertainty. We conduct an extensive empirical study on com-
mon unsupervised accuracy estimation benchmarks and demonstrate that MANO
achieves state-of-the-art performance across various architectures in the presence
of synthetic, natural, or subpopulation shifts.

1 Introduction

The deployment of machine learning models in real-world scenarios is frequently challenged by
distribution shifts between the training and test data. These shifts can substantially deteriorate the
model’s performance during testing (Geirhos et al., 2018; Koh et al., 2021; Quionero-Candela et al.,
2009) and introduce significant risks related to Al safety (Deng and Zheng, 2021; Hendrycks and
Mazeika, 2022). To alleviate this issue, it is common to monitor model performance by periodically
collecting the ground truth labels for a subset of the current test dataset (Lu et al., 2023). However,
this approach is often resource-intensive and time-consuming, which motivates the importance of
estimating the model’s performance on out-of-distribution (OOD) data in an unsupervised manner,
also known as Unsupervised Accuracy Estimation (Donmez et al., 2010).

Due to privacy constraints and computational efficiency, one of the most popular ways to estimate
accuracy without labels is to rely on the model’s outputs, called logits, as a source of confidence
in the model’s predictions (Deng et al., 2023; Garg et al., 2022; Guillory et al., 2021; Hendrycks
and Gimpel, 2016). For instance, ConfScore (Hendrycks and Gimpel, 2016) leverages the average
maximum softmax probability as the test accuracy estimator, while Deng et al. (2023) has recently
proposed to estimate the accuracy via the nuclear norm of the sof tmax probability matrix. These
approaches, however, tend to underperform on the natural shift applications while the intuition behind
the use of logits remains unclear. This motivates us to ask:
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Question 1  What explains the correlation between logits and generalization performance?

In section 3, we show that logits are connected to the model’s margins, i.e., the distances between
the learned embeddings and the decision boundaries. Inspired by the low-density separation (LDS)
assumption (Chapelle and Zien, 2005; Feofanov et al., 2023) that optimal decision boundaries should
lie in low-density regions, we propose MANO, an estimation score that aggregates the margins at
a dataset level by taking the L,-norm of the normalized model’s prediction matrix to evaluate the
density around decision boundaries. Nevertheless, logit-based approaches are known to suffer from
overconfidence (Odonnat et al., 2024; Wei et al., 2022a), resulting in high prediction bias, especially
under poorly-calibrated scenarios. This leads us to another critical question:

Question 2 How to alleviate the overconfidence issues of logits-based methods?

In section 4, we reveal that this question is connected to the normalization of logits and show that the
widely-used softmax normalization accumulates errors in the presence of prediction bias, which can
lead to overconfidence and significantly degrade the performance of existing accuracy estimation
methods in poorly-calibrated scenarios. To mitigate this issue, we propose a novel normalization
strategy called SoftTrun that takes into account the empirical distribution of logits and aims to find
a trade-off between information completeness of ground-truth logits and error accumulation.

Summary of our contributions. (1) We show that logits are informative of generalization per-
formance through the lens of the low-density separation assumption by reflecting the distances to
decision boundaries. (2) We identify the failure of the commonly-used softmax normalization that
accumulates errors under poorly calibrated because of its overconfidence, leading to biased estimation.
(3) We propose MANO, a training-free estimation method that quantifies the global distances to
decision boundaries by taking the L, norm of the logits matrix. MANO relies on a novel normal-
ization technique that makes a trade-off between information completeness and error accumulation
and is robust to different calibration scenarios. In addition, we demonstrate its connection to the
model’s uncertainty. (4) We demonstrate the superiority of MANO compared to 11 competitors
with a large-scale empirical evaluation including 12 benchmarks across diverse distribution shifts.
Results show that MANO consistently improves over the state-of-the-art baselines, including on the
challenging natural shift.

2 Problem Statement

Setting. Consider a classification task with input space X C R? and label space J = {1,..., K}.
Let ps and pr be the source and target distributions on X’ x ), respectively, with pg # pp. During
pre-training, we train a neural network f: X — R¥ on a training set Dy,4;,, With samples drawn i.i.d.
from pg. The model can be parameterized as f = fw o fg, where fg: X — RY is a feature extractor

and fw: R? — RX is a linear classifier with parameters W = (wk)szl € R9*K_ Further, we
denote an input by x, its corresponding label by y, its representation by z = f(x) and logits by q =

f(x) = (w z), € RE. The test accuracy of f on D is defined as Acc(f, D) == ﬁ Z(x.y)ep Ly—y
with predicted labels 7. The probability simplex is denoted by Ax = {p € [0,1]X |1 p = 1}.

Unsupervised accuracy estimation. Given a model f pre-trained on Dy, iy, the goal of unsuper-
vised accuracy estimation is to assess the generalization performance of f on target data drawn from
pr without having access to ground-truth target labels. This is a challenging task as we are subject
to distribution shifts, i.e. ps # pp, which often occur in real-world scenarios, and ground-truth
labels are inaccessible which prevents monitoring the model generalization performance at test time.
In practice, given an unlabeled test set Dyest = {xi}i]\il with N samples drawn i.i.d. from pp, we
aim to provide an estimation score S(f, Diest) that exhibits a linear correlation with the true OOD
accuracy Acc(f, Diest ). Following the standard closed-set setting, both py and pg involve the same
K classes. We refer the reader to Appendix B for an extended discussion of related work.

3 What Explains the Correlation between Logits and Test Accuracy?

Although existing literature has shown the feasibility of unsupervised accuracy prediction under
distribution shift by utilizing the model’s logits (Deng et al., 2023; Garg et al., 2022; Guillory et al.,
2021), the reason behind this empirical success remains unclear. In this section, we seek to understand



when and why logits can be informative for analyzing generalization performance. Based on the
derived understanding, we propose our approach, MANO, for estimating generalization performance.

3.1 Motivation

Logits reflect the distances to decision boundaries. We analyze logits from a linear classification
perspective in the embedding space, where the decision boundary of class k is the hyperplane
{2’ € RYw, 2’ = 0}. In Appendix D.4, we remind that the distance from a point z to hyperplane wy,
is given by d(wy, z) = |w] 2|/ ||wk||. As the pre-trained model is fixed and wy, can be normalized, we
derive that the logits in absolute values are proportional to the distance from the learned embeddings
to the decision boundaries, i.e., |qx| = |w, 7|  d(wy, z), Vk. This indicates that the magnitude of
logits reflects how close the corresponding embedding is from each decision boundary.

Low-density separation assumption.
When dealing with unlabeled data,
it is required to make assumptions
on the relationship between the dis-
tance to decision boundaries and gen-
eralization performance. The low-
density separation assumption (LDS,
Chapelle and Zien, 2005) states that
optimal decision boundaries should
lie in low-density regions (Figure 1)
so that unlabeled margin \w,jz| re- (a) High-density region (b) Low-density region.
flects reliable confidence in predict-

ing x to the class k. The assumption Figure 1: Illustration of the LDS assumption. When the
is often empirically supported as the boundary passes through dense regions (a), margins have
misclassified samples tend to be sig- little predictive power and can not be used without labels,
nificantly closer to the decision bound- while margins are informative in sparse regions (b).

ary than the correctly classified ones

(Mickisch et al., 2020). This might indicate that the absolute values of the logits are positively
correlated to its generalization performance.
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Assumptions on the prediction bias. It is important to note that the LDS assumption has been
initially proposed for semi-supervised learning, where labeled and unlabeled data are assumed to
come from the same distribution, which is not the case in our setting. This leads to logits writing
f(x) = q* + € in the general case’, i.e., subject to a potentially non-negligible prediction bias
€ = (e1,) with respect to the ground-truth logits q* € R¥. The following proposition shows the
impact of the prediction bias on the divergence between the true class posterior probabilities, assumed
modeled as p = softmax(q*) € Ak, and the estimated ones s = softmax(f(x)) € Ag.

Proposition 3.1. Let e = (max;{e;} — ). Then, the KL divergence between p and s verifies

0 < KL(p|ls) < e7p.

The proposition indicates that a large approximation error of the posterior may be caused by prediction
bias that has a large norm and/ or bad alignment with the true probabilities. Thus, the logit-based
methods assume that the magnitude of the bias is reasonably bounded while the direction of bias
does not drastically harm the ranking of classes by probabilities. We elaborate on this discussion and
present the proof of Proposition 3.1 in Appendix D.1.

3.2 MANO: Predicting Generalization Performance With Matrix Norm of Logits

We have shown a connection between the feature-to-boundary distances and generalization perfor-
mance as well as the impact of the prediction bias. Based on the derived intuition, we introduce
MANO that leverages the model margins at the dataset level performing two steps: normalization and
aggregation. The pseudo-code of MANO is provided in Appendix A.

¥ We write this decomposition without loss of generality as no restrictions are imposed on &.



Step 1: Normalization. Given that logits can exhibit significant variations in their scale depending
on the input x, it is crucial to normalize the logits within a standardized range to prevent outliers
from exerting disproportionate influence on the estimation. A natural range stems from the fact
that most deep classifiers have outputs in A, which amounts to applying a normalization function
o: REX - Ak on top of the pre-trained neural network (Mensch et al., 2019), where A refers
to probability simplex. This ensures having logits entries in [0, 1]. For each test sample x;, we
first extract its learned feature representation z; = f(x;). Then, logits corresponding to this
representation are computed as q; = fw (z;) € RX. The normalization procedure results in a
prediction matrix Q € RY*¥ with each row Q; containing the normalized logits of an input sample:

Qi =o0(q;) € Ax, (D

where o denotes the normalization function for the logits values. It is worth noting that not all
normalization methods are appropriate candidates. The selection of a suitable normalization function
o based on different calibration scenarios will be discussed in detail in Section 4.

Step 2: Aggregation. Once the logits are scaled, we aggregate the dataset-level information on
feature-to-boundary distances by taking the entry-wise L, norm of the prediction matrix Q, which
can be expressed as:

1 1 N K P
S D) = ==11Qy = Vi 2 2 lo(@) 2

i=1 k=1

As we have ||Q|], < VNKmax(Q;;) = VNK (Qi; € [0,1]), the scaling by vV NK leads to
S(f, Dest) € [0, 1], providing a standardized metric regardless of variations in the size of the test
dataset /V and the number of classes K. As p increases, MANO puts greater emphasis on high-margin
terms, focusing on confident classification hyperplanes. In the extreme case where p — oo, we have
|Q||, — max(Q;;). In practice, we choose p = 4 in all experiments and provide an ablation study
on p in Appendix E.1. As the L, norm is straightforward to compute, our approach is scalable and
efficient compared to the current state-of-the-art method Nuclear (Deng et al., 2023) that requires
performing a singular value decomposition.

3.3 Theoretical Analysis of MANO

In this section, we provide the theoretical support for the positive correlation between MANO and
test accuracy. More specifically, we reveal that our proposed score is connected with the uncertainty
of the neural network’s predictions in Theorem 3.3. Before presenting this result, we recall below the
definition of Tsallis a-entropies introduced in Tsallis (1988).

Definition 3.2 (Tsallis a-entropies (Tsallis, 1988)). Let « > 1 and k > 0. The Tsallis c-entropy
is defined as:

H,, (p) = k(o= 1)7'(1 - [Ip[2)-

In this work, we choose k = i following Blondel et al. (2019). The Tsallis entropies generalize
the Shannon entropy (limit case « — 1) and have been used in various applications (Blondel et al.,
2019, 2020; Muzellec et al., 2017). More details can be found in Appendix C. The following theorem,
whose proof is deferred to Appendix D.5, states that the estimation score obtained with MANO is a
function of the average Tsallis entropy of the normalized neural network’s logits.

Theorem 3.3 (Connection to uncertainty). Letp > 1, a = % and b = % Given a test set
Diest = {x:}V,, corresponding logits q; = f(x;), a normalization function o: RX — Ay
and p > 1, the estimation score S(f, Diest) provided by MANO (Algorithm 1) verifies

S(f, Drest)” a( ZHT >+b 3)
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Figure 2: Empirical evidence with Resnet18. (a) The model is well-calibrated on Office-Home and
miscalibrated on PACS. (b) SoftTrun is superior to the state-of-the-art Nuclear (Deng et al., 2023)
in all scenarios while the softmax heavily fails on PACS. (¢) Increasing the approximation order n
in Eq. (4) is detrimental on PACS and beneficial on Office-Home. Taking n € {2, 3} is an optimal
trade-off in all calibration scenarios.

As a > 0, Theorem 3.3 implies that the estimation score provided by MANO is negatively correlated
with the average Tsallis-entropy on the test set. In particular, the less certain the model is on test
data, the lower the test accuracy is and the higher the entropy term is in Eq. (3), resulting in a lower
score S(f, Diest ). As the converse sense holds, MANO provides a score positively correlated to the
test accuracy. This follows the findings of Guillory et al. (2021); Wang et al. (2021) and empirically
confirmed in Section 5 for various architectures, datasets, and types of shift.

4 How to Alleviate Overconfidence Issues of Logit-Based Methods?

The most common normalization technique of existing logit-based approaches is the softmax
normalization. In this section, we show that the widely used softmax is sensitive to prediction bias,
which hinders the quality of the estimation in poorly calibrated scenarios. To alleviate this issue, we
propose a novel normalization strategy, SoftTrun, which balances the information completeness
and overconfidence accumulation based on calibration.

4.1 The Failure of Softmax Normalization Under Poorly-Calibrated Scenarios

Empirical evidence. The softmax normalization can suffer from overconfidence issues (Odonnat
et al., 2024; Wei et al., 2022b) and saturation of its outputs (Chen et al., 2017), with one entry
close to one while the others are close to zero. Consequently, logit-based accuracy estimation
methods using sof tmax are sensitive to prediction bias, leading to low-quality estimations in poorly
calibrated scenarios. We illustrate this phenomenon in Figure 2(a) on two datasets, where a pre-trained
ResNet18 exhibits more pronounced calibration issues on PACS (Li et al., 2017) compared to Office
Home (Venkateswara et al., 2017). Figure 2(b) shows that using softmax in both MANO and the
state-of-the-art method Nuclear (Deng et al., 2023) negatively impacts their accuracy estimation
performance on the poorly calibrated PACS dataset.

Analysis. To alleviate those issues, we first notice that the softmax can be decomposed as
softmax(q) = exp(q)/ Zle exp(qi) = (¢ o exp)(q), where ¢: REX — Ay writes ¢(u) =
u/ Zszl u, = u/||ul|;. While ¢ has appealing property for normalization (see Proposition D.4),
the exponential accumulates prediction errors, leading to the softmax overconfidence and a biased
accuracy estimation. In particular, assume that the k-th entry of the output of the neural network on a
test sample x; writes q; , + €, where q; ;, are the ground-truth logits and ¢, is the prediction error.
Then, the n-order Taylof polynomial of the exponential writes

(a;, +ex)? (qj , +ex)”
b @)
! n!

Figure 2(c) illustrates the impact of truncating Eq. (4) up to the n-th order. We conclude that a trade-
off is needed between information completeness on true logits and error accumulation depending on
the type of calibration scenario. Specifically, when the model is poorly calibrated on a given dataset

exp(qj x +ex) ~ 1+ (a7, +ex) +



(i.e., ex large in absolute value), the normalization should focus on avoiding error accumulation and
when the model is well calibrated (i.e., €5, small in absolute value), the normalization should focus on
information completeness.

4.2 SoftTrun: The Proposed Normalization Strategy

The above analysis shows that different calibration scenarios require an emphasis on different
information during normalization. Therefore, we propose a normalization strategy called SoftTrun
that normalizes the model outputs based on the calibration scenario. Given logits q; € R¥ and
reusing the function ¢ previously introduced, it takes the general form:

o(q;) = (pov)(q; :71}(%) Ag. 5
(qi) = (¢ov)(ai) Zlev(qi)ke K Q)

where v: RX — Rf is designed to avoid error accumulation under poorly-calibrated scenarios by
truncating the exponential (n = 2 in Eq. (4)) and using complete logits information under well-
calibrated scenarios. As in practice, the calibration of the model on test data is unknown, SoftTrun
employs a simple yet effective strategy reminiscent of pseudo-labeling (Lee, 2013; Sohn et al., 2020).
More specifically, given a test dataset Dyesy = {X;}¥; and corresponding logits q; = f(x;), a
criterion ®(Dyesy) is computed at the dataset level and the normalized logits are defined as

2
’U( ) _ 1+qi+%7 ifq)(Dtest) SU‘ (6)
exp(qi); if(I)(Dtest) >

We define ®(Dies) = — Z;V=1 Zszl log(%), which is equal, up to a constant, to

the average KL divergence between the uniform distribution and the predicted sof tmax probabilities.
It follows from Tian et al. (2021) that showed that this KL divergence was small when the uncertainty
of the model was high and large for confident models. Hence, when uncertainty is high, i.e.,
®(Dyest) < 1, we truncate the exponential to reduce error accumulation, and when the model is
certain, i.e., ®(Diest) > 1, complete information is used with the exact exponential (and we recover
the softmax). In all our experiments, we fix n = 5. In Appendix D, we provide theoretical insights
on our choices of 1) and ®(Dycst ) along with additional discussion.

5 Experiments

5.1 Experiment Setup

Pre-training datasets. For pre-training the neural network, we use a diverse set of datasets includ-
ing CIFAR-10, CIFAR-100 (Krizhevsky and Hinton, 2009), TinyImageNet (Le and Yang, 2015),
ImageNet (Deng et al., 2009), PACS (Li et al., 2017), Office-Home (Venkateswara et al., 2017),
DomainNet (Peng et al., 2019) and RR1-WILDS (Taylor et al., 2019), and BREEDS (Santurkar et al.,
2020) which leverages class hierarchy of ImageNet (Deng et al., 2009) to create 4 datasets including
Living-17, Nonliving-26, Entity-13 and Entity-30.

Test datasets. In our comprehensive evaluation, we consider 12 datasets with 3 types of distribution
shifts: the synthetic, the natural, and the subpopulation shifts. To verify the effectiveness of our
method under the synthetic shift, we use CIFAR-10C, CIFAR-100C, and ImageNet-C (Hendrycks and
Dietterich, 2019) that span 19 types of corruption across 5 severity levels, as well as TinylmageNet-C
(Hendrycks and Dietterich, 2019) with 15 types of corruption and 5 severity levels. For the natural
shift, we use the domains excluded from training from PACS, Office-Home, and DomainNet, RR1-
WILDS as the OOD datasets. For the novel subpopulation shift, we consider the BREEDS benchmark
with Living-17, Nonliving-26, Entity-13, and Entity-30 which are constructed from ImageNet-C.

Training details. To show the versatility of our method across different architectures, we perform
experiments on ResNet18, ResNet50 (He et al., 2016), and WRN-50-2 (Zagoruyko and Komodakis,
2016) models. We train them for 20 epochs for CIFAR-10 (Krizhevsky and Hinton, 2009) and 50
epochs for the other datasets. In all cases, we use SGD with a learning rate of 10~2, cosine learning
rate decay (Loshchilov and Hutter, 2016), a momentum of 0.9, and a batch size of 128.



Table 1: Method comparison on four benchmarks with ResNet18, ResNet50 and WRN-50-2 under
the synthetic shift, where R? refers to coefficients of determination, and p refers to the absolute
value of Spearman correlation coefficients (higher is better). The best results are highlighted in
bold. MANO consistently achieves the highest R? and p values across different datasets and network
architectures, indicating its superior performance.

Synthetic Shift

Dataset Network __Rowtion  ConfScore  Entropy _ AgreeScore ATC Fréchet  Dispersion  ProjNorm MDE CoT Nuclear MaNo
p R p R® p R p R p R p R p R p R » R? » RZ o R p
ResNet18 0.822 0.951 0.869 0.985 0.899 0.987 0.663 0.929 0.884 0.985 0.950 0.971 0.968 0.990 0.936 0.982 0.957 0.987 0.989 0.995 0.995 0.997 0.995 0.997
CIFAR 10 ResNet50 0.835 0.961 0.935 0.993 0.945 0.994 0.835 0.985 0.946 0.994 0.858 0.964 0.987 0.990 0.944 0.989 0.978 0.963 0.984 0.996 0.994 0.996 0.996 0.997
‘WRN-50-2 0.862 0.976 0.943 0.994 0.942 0.994 0.856 0.986 0.947 0.994 0.814 0.973 0.962 0.988 0.961 0.989 0.930 0.809 0.988 0.994 0.994 0.995 0.996 0.992
Average  0.840 0.963 0.916 0.991 0.930 0.992 0.785 0.967 0.926 0.991 0.874 0.970 0.972 0.990 0.947 0.987 0.955 0.920 0.987 0.995 0.995 0.996 0.996 0.995
ResNet18 0.860 0.936 0.916 0.985 0.891 0.979 0.902 0.973 0.938 0.986 0.888 0.968 0.952 0.988 0.979 0.980 0.975 0.994 0.991 0.995 0.989 0.995 0.996 0.996
CIFAR 100 ResNet50 0.908 0.962 0.919 0.984 0.884 0.977 0.922 0.982 0.921 0.984 0.837 0.972 0.951 0.985 0.988 0.991 0.988 0.995 0.985 0.996 0.979 0.994 0.995 0.997
‘WRN-50-2 0.924 0.970 0.971 0.984 0.968 0.981 0.955 0.977 0.978 0.993 0.865 0.987 0.980 0.991 0.990 0.991 0.995 0.994 0.987 0.997 0.962 0.988 0.996 0.998
Average 0.898 0.956 0.936 0.987 0.915 0.983 0.927 0.982 0.946 0.988 0.864 0.976 0.962 0.988 0.985 0.987 0.986 0.994 0.988 0.996 0.977 0.993 0.996 0.997
ResNet18 0.786 0.946 0.670 0.869 0.592 0.842 0.561 0.853 0.751 0.945 0.826 0.970 0.966 0.986 0.970 0.981 0.941 0.993 0.985 0.994 0.983 0.994 0.981 0.996
TinyImageNet ResNet50 0.786 0.947 0.670 0.869 0.651 0.892 0.560 0.853 0.751 0.945 0.826 0.971 0.977 0.986 0.979 0.987 0.941 0.993 0.980 0.994 0.965 0.994 0.980 0.996
yimag WRN-50-2 0.878 0.967 0.757 0.951 0.704 0.935 0.654 0.904 0.635 0.897 0.884 0.984 0.968 0.986 0.965 0.983 0.961 0.996 0.985 0.997 0.962 0.988 0.979 0.997
Average 0.805 0.959 0.727 0.920 0.650 0.890 0.599 0.878 0.693 0.921 0.847 0.976 0.970 0.987 0.972 0.984 0.950 0.995 0.984 0.995 0.968 0.993 0.980 0.996
ResNet18 0.979 0.991 0.963 0.991 0.974 0.983 0.802 0.974 0.940 0.971 0.975 0.993 0.924 0.994 0.996 0.998 0.992 0.997 0.992 0.997
ImageNet ResNet50 0.980 0.994 0.967 0.992 0.970 0.983 0.855 0.974 0.938 0.968 0.986 0.993 0.886 0.994 0.993 0.996 0.985 0.997 0.991 0.998
8 ‘WRN-50-2 0.983 0.991 0.963 0.991 0.983 0.993 0.909 0.988 0.939 0.976 0.978 0.993 0.880 0.997 0.989 0.994 0.987 0.998 0.996 0.998
Average 0.981 0.993 0.969 0.992 0.976 0.987 0.855 0.979 0.939 0.972 0.980 0.993 0.897 0.995 0.993 0.996 0.988 0.998 0.993 0.998
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Figure 3: OOD error prediction versus True OOD error on Entity-13 with ResNet18. This scatter plot
compares the performance of MANO with Dispersion Score and ProjNorm. Each point represents
one dataset under a specific type and severity of corruption. Different shapes indicate different types
of corruption, while darker colors indicate higher severity levels.

Evaluation Metrics We use the coefficient of determination (R2, Nagelkerke et al., 1991) and
the Spearman’s rank correlation coefficient (p, Kendall, 1948) to evaluate performance. The p
coefficient measures monotonicity, ranging from —1 to 1, where values close to 1 or —1 indicate
strong correlation, and 0 indicates no correlation. The R? coefficient measures the linearity and
goodness of fit between estimates and accuracy, ranging from 0 to 1, with 1 indicating a perfect fit.

Baselines. We consider 11 baselines commonly evaluated in the unsupervised accuracy estimation
studies, including Rotation Prediction (Rotation) (Deng et al., 2021), Averaged Confidence (ConfS-
core) (Hendrycks and Gimpel, 2016), Entropy (Guillory et al., 2021), Agreement Score (AgreeScore)
(Jiang et al., 2021), Averaged Threshold Confidence (ATC) (Garg et al., 2022), AutoEval (Fréchet)
(Deng and Zheng, 2021), ProjNorm (Yu et al., 2022), Dispersion Score (Dispersion) (Xie et al., 2023),
MDE (Peng et al., 2024), COT (Lu et al., 2024), and Nuclear Norm (Nuclear) (Deng et al., 2023).

5.2 Main Observations

MANO shows competitive performance gains under both synthetic and subpopulation shifts.
Tables 1 and 2 present the numerical results of unsupervised accuracy estimation across 8 datasets
using 3 different network architectures, evaluated under synthetic and subpopulation shifts. These
shifts are quantified by R? and p. Empirical results demonstrate that these distribution shifts do not
significantly impact calibration (i.e., Sca1; < 7). We observe that MANO consistently outperforms
other baselines, achieving state-of-the-art performance. For instance, MANO achieves R? > 0.960
and p > 0.990 under subpopulation shift, whereas the performance of other baselines does not reach
such consistently high levels.



Table 2: Method comparison on four benchmarks using ResNet18, ResNet50, and WRN-50-2 under
subpopulation shift with R? and p metrics (the higher the better). The best results are in bold.

Subpopulation Shift

Dataset

Network

Rotation

ConfScore

Entropy

AgreeScore

ATC

Fréchet

Dispx

ersion

ProjNorm

MDE

CcoT

Nuclear

MANo

7

P

72

P

7

P

7

P

2

P

7

P

7

P RZ

P

7

P

RZ »

7

P

72

P

Entity-13

ResNet18
ResNet50
WRN-50-2

0.927
0.932
0.939

0.961
0.976
0.983

0.795
0.728
0.930

0.940
0.941
0.977

0.794
0.698
0.919

0.935
0.928
0.973

0.543
0.901
0.871

0919
0.964
0.935

0.823
0.783
0.936

0.945
0.950
0.980

0.950
0.903
0.906

0.981
0.959
0.958

0.937
0.764
0.815

0.968 0.952
0.892 0.944
0.905 0.950

0.981
0.974
0.977

0.927
0912
0.925

0.995
0.993
0.995

0.960
0.935
0.944

0.985
0.971
0.979

0.978
0.989
0.989

0.991
0.996
0.995

0.992
0.993
0.992

0.996
0.998
0.996

Average

0.933

0.973

0.817

0.953

0.804

0.945

0.772

0.939

0.847

0.958

0.920

0.966

0.948

0.977 0.839

0.922

0.921

0.995

0.947 0.979

0.985

0.994

0.993

0.996

Entity-30

ResNet18
ResNet50
WRN-50-2

0.964
0.961
0.940

0.979
0.980
0.978

0.570
0.878
0.897

0.836
0.969
0.974

0.553
0.838
0.878

0.832
0.956
0.970

0.542
0.914
0.826

0.935
0.975
0.955

0.611
0.924
0.936

0.845
0.973
0.984

0.849
0.835
0.927

0.978
0.956
0.973

0.929
0.783
0.927

0.968
0.914
0.973

0.952
0.937
0.959

0.987
0.986
0.986

0.931
0918
0.925

0.994
0.995
0.995

0.971
0.958
0.944

0.993
0.982
0.979

0.980
0.978
0.985

0.993
0.994
0.996

0.991
0.988
0.988

0.996
0.997
0.997

Average

0.955

0.978

0.781

0.926

0.756

0.919

0.728

0.956

0.823

0.934

0.871

0.969

0.880

0.952 0.949

0.987

0.925

0.995

0.970 0.988

0.981

0.994

0.989

0.996

Living-17

ResNet18
ResNet50
WRN-50-2

0.876
0.906
0.909

0.973
0.956
0.957

0.913
0.880
0.928

0.973
0.967
0.980

0.898
0.853
0.921

0.970
0.961
0.977

0.586
0.633
0.652

0.736
0.802
0.793

0.940
0.938
0.966

0.973
0.976
0.984

0.768
0.771
0.931

0.950
0.926
0.967

0.900
0.851
0.931

0.958
0.929
0.966

0.923
0.903
0.915

0.970
0.924
0.970

0.927
0914
0914

0.985
0.985
0.983

0.972
0.953
0.965

0.984
0.973
0.990

0.975
0.967
0.951

0.987
0.976
0.978

0.980
0.975
0.961

0.991
0.997
0.996

Average

0.933

0.974

0.907

0.973

0.814

0.969

0.623

0.777

0.948

0.978

0.817

0.949

0.894

0.951 0913

0.969

0918

0.984

0.963 0.982

0.964

0.980

0.972

0.995

Nonliving-26

ResNet18
ResNet50
WRN-50-2

0.906
0.916
0917

0.955
0.970
0.977

0.781
0.832
0.932

0.925
0.942
0.971

0.739
0.776
0.912

0.909
0918
0.959

0.543
0.638
0.676

0.810
0.837
0.861

0.854
0.893
0.945

0.939
0.960
0.969

0.914
0.848
0.885

0.980
0.950
0.942

0.958
0.805
0.893

0.981
0.907
0.939

0.939
0.873
0.924

0.978
0.972
0.973

0.929
0.907
0.909

0.989
0.993
0.991

0.982
0.962
0.962

0.992
0.984
0.979

0.970
0.956
0.960

0.989
0.985
0.988

0.978
0.975
0.978

0.991
0.995
0.992

Average

0.913

0.967

0.849

0.946

0.809

0.929

0.618

0.836

0.897

0.956

0.882

0.957

0.913

0.974 0.886

0.943

0.915

0.991

0.969 0.985

0.962

0.987

0.977

0.992

Table 3:
natural

Method comparison on four benchmarks with ResNet18, ResNet50 and WRN-50-2 under
shift with R? and p metrics (the higher the better). The best results are highlighted in bold.

Natural Shift

Dataset

Network

Rotation

ConfScore

Entropy

AgreeScore

ATC

Fréchet

Disp

ersion

ProjNorm

MDE

cor

Nuclear

MaNo

P

72

P

72

P

"2

P

e

P

72

P

3

p R

P

2

P

5

"2

P

"2

P

PACS

ResNet18
ResNet50
‘WRN-50-2

0.822
0.860
0.865

0.895
0.923
0.902

0.594
0.070
0.646

0.755
0.069
0.678

0.624
0.061
0.629

0.755
0.055
0.671

0.613
0.463
0.377

0.832
0.622
0.858

0.514
0.192
0.752

0.650
0.265
0.832

0.624
0.463
0.558

0.804
0.622
0.832

0.832
0.073
0.111

0.825 0.161
0.167 0.244
0.167 0.474

0.419
0.587
0.650

0.003
0.059
0.072

0.153
0.104
0.244

0.790 0.783
0.891 0.790
0.890 0.888

0.609
0.611
0.607

0.874
0.888
0.867

0.827
0.923
0.924

0.909
0.958
0.972

Average

0.849

0.906

0437

0.501

0.438

0.494

0.488

0.770

0.486

0.582

0.548

0.337

0.338

0.275 0.293

0.552

0.045

0.065

0.857 0.820

0.609

0.876

0.891

0.946

Office-Home

ResNet18
ResNet50
WRN-50-2

0.822
0.851
0.823

0.930
0.944
0.958

0.795
0.769
0.741

0.909
0.895
0.874

0.761
0.742
0.696

0.881
0.853
0.846

0.054
0.026
0.132

0.146
0.216
0.405

0.571
0.487
0.383

0.615
0.734
0.643

0.605
0.607
0.589

0.755
0.685
0.706

0.453
0.383
0.456

0.664
0.727
0.713

0.064
0.169
0.172

0.202
0475
0.531

0.331
0.342
0.342

0.650
0.622
0.650

0.863
0.762
0.863

0.874
0.846
0.874

0.692
0.731
0.766

0.783
0.895
0.874

0.926
0.838
0.800

0.930
0.916
0.895

Average

0.832

0.944

0.768

0.892

0.733

0.860

0.071

0.256

0.480

0.664

0.601

0.715 0.

431

0.702 0.135

0.403

0.339

0.650

0.781 0.855

0.730

0.850

0.854

0.913

DomainNet

ResNet18
ResNet50
‘WRN-50-2

0.568
0.588
0.609

0.692
0.703
0.712

0.670
0.570
0.774

0.736
0.706
0.874

0.423
0.344
0.711

0.609
0.573
0.845

0.326
0.455
0.437

0.668
0.697
0.698

0.429
0.245
0.846

0.597
0.404
0.918

0.704
0.746
0.585

0.903
0.872
0.831

0.202
0.002
0.003

0.516
0.041
0.034

0.219
0.220
0.363

0.443
0.430
0.466

0.358
0.379
0.520

0.445
0.527
0.713

0.897
0.903
0.885

0.910
0.927
0.935

0.758
0.809
0.850

0.789
0.879
0911

0.902
0.910
0.893

0.937
0.950
0.978

Average

0.588

0.702

0.671

0.722

0.493

0.676

0.406

0.688

0.507

0.639

0.678

0.869

0.069

0.197 0.234

0.446

0.419

0.562

0.894 0919

0.805

0.895

0.899

0.949

RR1-WILDS

ResNet18
ResNet50
‘WRN-50-2

0.821
0.740
0.031

1.000
1.000
0.500

0.951
0918
0.941

1.000
1.000
1.000

0.836
0.819
0.846

1.000
1.000
1.000

0.929
0.938
0.946

1.000
1.000
1.000

0.342
0.986
0.988

0.500
1.000
1.000

0.936
0.935
0.922

1.000
1.000
1.000

0.843
0.737
0.824

1.000
1.000
1.000

0.859
0.867
0.878

1.000
1.000
1.000

0.927
0.938
0.954

1.000
1.000
1.000

0.969
0.960
0.934

1.000
1.000
1.000

0.885
0.906
0.840

1.000
1.000
1.000

0.983
0.978
0.969

1.000
1.000
1.000

Average

0.530

0.833

0.937

1.000

0.833

1.000

0.938

1.000

0.779

0.833

0.931

1.000

0.801

0.833 0.868

000

0.940

1.000

0.953 1.000

0.877

1.000

0.977

1.000

MANoO with an appropriate normalization technique significantly boosts estimation per-
formance under the natural shift. Table 3 illustrates the results of accuracy estimation un-
der the natural shift on a total of four datasets. Since calibration performance affected by the
natural shift is more complex than the other distribution shifts, we balance ground-truth log-
its and error accumulation via the value of ®(Dic). From Table 3, we observe a signifi-
cant improvement compared with the other benchmarks. For instance, our method achieves
the best performance on all four datasets on average. To visualize the estimation performance,
we provide the scatter plots for Dispersion Score, Pro-

JjNorm and MANO in Figure 3 on Entity-18 with ResNet18. e j -
We find that MANO presents a robust linear relationship 08 % ‘
between the designed scores and gound-truth OOD errors, o
while the other state-of-the-art baselines tend to exhibit a v )
biased estimation of high test errors. 0.4 )

0.2
Robustness enhancement achieved by MANO. Fig- 0.0 :
ure 4 presents a box plot showing the estimation robustness 5 S S & o S SES®
across different distribution shifts on all datasets except MR C &Y

ImageNet, using ResNet18. Results for ImageNet are ex-
cluded due to the lack of Rotation and AgreeScore data
for this dataset, as these two methods require retraining
the networks. We observe that the estimation performance
of MANO is more stable than other baselines across three
types of distribution shifts. Additionally, MANO achieves
the highest median estimation performance.

Figure 4: Robustness comparison be-
tween MANO and other baselines across
three types of distribution shifts using
ResNet18. MANO achieves the best and
most robust overall estimations.
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Figure 5: Comparison of generalization capability across four methods. Each subplot displays a linear
regression model fitted on ImageNet-C, which is used to predict the accuracy on ImageNet-V2-C.
The mean absolute error (MAE) is reported. All experiments are conducted using ResNet18.

5.3 Discussion

Generalization capabilities of MANO. To verify the generalization capabilities of MANO, we
utilize designed scores calculated from ImageNet-C and their corresponding accuracy to fit a linear
regression model. This model is then used to predict the test accuracy on ImageNet-V2-C, which is
generated using the 10 new corruptions provided by (Mintun et al., 2021) on ImageNet-V2 (Recht
et al., 2019). These new corruptions are perceptually dissimilar from those in ImageNet-C, including
warps, blurs, color distortions, noise additions, and obscuring effects. Figure 5 shows that ConfScore
and Dispersion give two distinct trends, while Nuclear exhibits some deviations for ImageNet-V2-
C'. In comparison, our MANO exhibits a consistent prediction pattern for both ImageNet-C and
ImageNet-V2-C, aligning well with the linear regression model trained on ImageNet-C. Additionally,
experimental results on ImageNet-C and ImageNet-C, generated from the validation set of ImageNet,
are provided in Appendix E.4, further demonstrating the superiority of MANO.

Can SoftTrun enhance other logit-based Table 4: Effect of SoftTrun on other logit-based
methods? To study this, we conducted methods. SoftTrun significantly boosts the perfor-
an ablation study by equipping SoftTrun mance of Nuclear. The metric used is R2.

with Nuclear (Deng et al., 2023), ConfS-

core (Hendrycks and Gimpel, 2016), and ConfScore MANO Nuclear
our MANO. In Table 4, we observe that Dataset  —— ———— 0w/
SoftTrun significantly enhances the estima-
tion performance R? of Nuclear. For example,
Nuclear is improved from 0.692 to 0.826 on  Office-Home 0.795 0.829 0.929 0926 0.692 0.826
poorly-calibrated Office-Home.

PACS 0.594 0.574 0.541 0.827 0.609 0.851

Limitations. Despite its soundness and strong empirical performance, our method has potential
areas for improvement. One of these is the dependence on 7 in Eq. (6). In future work, we will
explore a smoother way to automatically select the optimal normalization function without requiring
hyperparameters. Additionally, if multiple validation sets are provided, as in (Deng et al., 2021; Deng
and Zheng, 2021), we could select 77 based on those sets.

Ablation study. We provide an ablation studies on the L,, norm and Taylor order » in Appendix E.
6 Conclusion

In this paper, we introduce MANO, a simple yet effective training-free method to estimate test
accuracy in an unsupervised manner using the Matrix Norm of neural network predictions on test
data. Our approach is inspired by the LDS assumption that optimal decision boundaries should lie in
low-density regions. To mitigate the negative impact of different distribution shifts on estimation
performance, we first demonstrate the failure of softmax normalization under poor calibration, due
to the accumulation of overconfident errors. We then propose a normalization strategy based on
Taylor polynomial approximation, balancing logits information and error accumulation. Extensive
experiments show that MANO consistently outperforms previous methods across various distribution
shifts. This work highlights that logits imply the feature-to-boundary distance and considers the



impact of calibration on estimation performance. We hope our insights inspire future research to
further explore the relationship between model outputs and generalization.
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Appendix

Roadmap. In this appendix, we provide the pseudo-code of MANO in Section A. We discuss
related work in Section B and provide some background on Tsallis entropies in Section C. Additional
discussion and theoretical insights into Section 3.1 and Section 4 are given in Section D along with
the proofs of the main results. Finally, we conduct a thorough ablation study and sensitivity analysis
in Section E. We display the corresponding table of contents below.
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A Pseudo-Code of MANO

Algorithm 1 summarizes MANO introduced in Section 3.2, which is a lightweight, training-free
method for unsupervised accuracy estimation using the neural network’s outputs.

Algorithm 1: Our proposed algorithm, MANO, for unsupervised accuracy estimation.
N
i=1

Input: Model f pre-trained on Dy, test dataset Dyest = {X;}
Parameters: Hyperparameter p > 1.
Initialization: Empty prediction matrix Q € RV*X,
Criterion: compute threshold ®(Dy.st) and choose o following Eq. (6).
fori € [1,N] do

Inference: recover logits q; = f(x;) € RX.

Normalization: obtain normalized logits o(q;) € Ak.

Update: fill the prediction matrix Q; + o(q;) following Eq. (1).

end
Output Estimation score S(f, Diest) = ﬁ 1QJ|, following Eq. (2).

B Related Work

Unsupervised accuracy estimation. This task aims to estimate model generalization performance
on unlabeled test sets. To achieve this, several directions have been proposed. (1) Utilizing model
outputs: One popular research direction is to use the model outputs on distribution-shifted data to
construct a linear relationship with the test accuracy (Deng et al., 2023; Garg et al., 2022; Guillory
et al., 2021; Hendrycks and Gimpel, 2016). For example, a recent work (Deng et al., 2023) introduced
the nuclear norm of the softmax probability matrix as the accuracy estimator. However, current
approaches following this direction significantly suffer from the overconfidence issues (Wei et al.,
2022a), leading to fluctuating estimation performance across natural distribution shifts. Our work
focuses on addressing this issue by balancing logit-information completeness and overconfidence-
information accumulation. (2) Considering distribution discrepancy: another direction examines
the negative relation between test accuracy and the distribution discrepancy between the training
and test datasets (Deng and Zheng, 2021; Lu et al., 2023; Yu et al., 2022). However, commonly-
used distribution distances do not guarantee stable accuracy estimation under different distribution
shifts (Guillory et al., 2021; Xie et al., 2023), and some of these methods are time-consuming on
large-scale datasets due to the requirement of training data (Deng and Zheng, 2021). (3) Constructing
unsupervised losses: methods such as data augmentation and multiple-classifier agreement have also
been introduced (Jiang et al., 2021; Madani et al., 2004; Platanios et al., 2017, 2016). However, they
usually require special model architectures, undermining their practical applicability.

Distance to decision boundaries in deep learning. Decision boundaries of deep neural networks
have been studied in various contexts. For example, some works explore the geometric properties
of deep neural networks either in the input space (Fawzi et al., 2018; Karimi et al., 2019; Montufar
et al., 2014; Poole et al., 2016) or in the weight space (Chaudhari et al., 2019; Choromanska et al.,
2015; Dauphin et al., 2014; Dinh et al., 2017; Freeman and Bruna, 2016). Some works apply the
properties of decision boundaries to address practical questions, such as adversarial defense (Croce
and Hein, 2020; He et al., 2018; Heo et al., 2019), OOD detection (Lee et al., 2020), and domain
generalization (Li et al., 2022; Yousefzadeh, 2021). Similar to Li et al. (2018), MANO discusses the
distance between the learned intermediate feature to each decision boundary in the last hidden space.

Normalization in deep learning. Normalization is a crucial technique extensively utilized across
various fields in deep learning, including domain generalization (Fan et al., 2021; Seo et al., 2020;
Wang et al., 2021), metric learning (Oord et al., 2018; Sohn, 2016; Wu et al., 2018), face recognition
(Deng et al., 2019; Liu et al., 2017; Ranjan et al., 2017; Wang et al., 2017; Zhang et al., 2019) and
self-supervised learning (Chen et al., 2020). For example, TENT (Wang et al., 2021) normalizes
features of test data using the mean value and standard deviation estimated from the target data.
Lo-constrained softmax (Ranjan et al., 2017) introduces Lo normalization on features. These
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normalization techniques are primarily employed to adapt new samples to familiar domains, calculate
similarity, and speed up convergence. However, our proposed normalization focuses on reducing the
negative implications of poorly calibrated scenarios.

C Background on Tsallis Entropies

The definition of Tsallis a-entropies (Tsallis, 1988) is given below.

Definition C.1 (Tsallis a-entropies). Let p € Ak be a probability distribution. Let oo > 1 and
k > 0. The Tsallis a-entropy is defined as:

H, (p) = k(o= 1)7'(1 — [Ip[2)-

Itis commontotake k = 1 or k = i following Blondel et al. (2019).
The Tsallis c-entropy generalizes the Boltzmann-Gibbs theory of
statistic mechanics to nonextensive systems. It has been used as
a measure of disorder and uncertainty in many applications (Gell-
Mann and Tsallis, 2004; Negrinho and Martins, 2014; Sneddon,
2007; Teimoori et al., 2024), including in Machine Learning (Blon-
del et al., 2019, 2020; Muzellec et al., 2017). Moreover, they general- ¢
ize two widely-known measures of uncertainty. Indeed, the limit case oo v -
a — 1 leads to the Shannon entropy Hg (see Peters et al., 2019, Ap- t

pendix A.1), i.e., lim,—1 HY (p) = Hs(p) = — Zf(:l p; In(p;), Figure 6: Tsallis a-entropies
while taking o« = 2 leads to the Gini index G, a popular impurity of [t,1—t]fort e [0,1].
measure fo decision trees (Gini, 1912), i.e., H (p) = 3 (1—||p[|3) =

G(p). Tsallis entropies measure the uncertainty: the higher the entropy the greater the uncertainty.
From a probabilistic perspective, the entropy will take high values for uncertain probability distri-
butions, i.e., close to the uniform distribution. We visualize the evolution of the Tsallis entropy for

varying parameters « in Figure 6, where the case o = 1 corresponds to the Shannon entropy.

HI(t, 1 - t])
2 2

o
N

o
)

D Theoretical Insights and Proofs
In this section, we provide theoretical insights for Section 4 and the proofs of our theoretical results.

Notations. Scalar values are denoted by regular letters (e.g., parameter \), vectors are represented
in bold lowercase letters (e.g., vector x) and matrices are represented by bold capital letters (e.g.,
matrix A). The i-th row of the matrix A is denoted by A, its j-th column is denoted by A.. ; and its
elements are denoted by A;;. The trace of a matrix A is denoted by Tr(A) and its transpose by AT
The L, norm of a vector x is denoted by ||x||,,, and by abuse of notation we denote it by ||A||, for
amatrix A with [[A[|P = 7[|A;||P = >7,;|AqP. Let Ak = {p € [0, 1% Zfil pi; = 1} be the
K -dimensional probability simplex.

D.1 Impact of Prediction Errors

Let x € Diest be a test sample with ground-truth label y € {1, ..., K'}. In multi-class classification,
the softmax operator is used to approximate the posterior probability p(y|x) (see Bishop, 2006,
chap.4, p.198). Reusing the notations of Section 4, because of the distribution shifts between source
and target, logits are subject to a prediction bias € = (e});, and write f(x) = q* + € where q* are
ground-truth logits. In this section, we study the impact of such bias on the approximation of the
posterior p(y|x).

Impact on the posterior approximation. Proposition 3.1 shows the impact of the prediction
bias on the KL divergence between the true class posterior probabilities, assumed modeled as
p = softmax(q*) € Ak, and the estimated ones s = softmax(f(x)) € Ak. In particular, it states
that

0 < KL(pl[s) < elp, ©)
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where e, = (max;{e;} — £x)r € RE. The proof is given below.

Proof. We denote q = f(x) € R¥X the neural network’s outputs on a given test sample x. We first
remark that

KL(pls) = Y pi m(';’:)

* K X * .
=Y ps 1n<zﬁxp(q’“) Zim PG +5J)> @®)
k

j=1 exp(qj) exp(aj; +ew)

K N .
=2_piln (exp(—sk) : Ej:f’ plaj + g)>.

k Zj:l eXP(Q;)

To obtain the upper-bound, we notice that
exp(q; +¢;) = exp(qj) exp(e;) < exp(q;) - max{exp(er)}-

This leads to

K X K
Zj:l eXp(q‘j +¢5) < max; {exp(e;) } Zj:l exp(q;f)
K = K
Zj:l eXP(Q;) Zj:l eXP(Cl;)

Using the fact that all the terms are positive and that In and exp are increasing functions, we obtain
from Eq. (8) that

= mlax{exp(sg)}. 9

K * i
zkjpk In <€XP(—€k) : Zg}_ﬁi?iq;;”) < zkjpk In(exp(—¢x) 'mlax{exp(fl)})

< > pilln(exp(max{e})) - e

- (10)
< —
= Xk: pk[mlax{él} ex)
= ESCP'
Combining Eq. (8) and Eq. (10) gives the upper bound. O

The quantities €, is a linear transformation of the prediction bias ¢ € R¥ and has nonnegative entries,
which means each class is overestimated, representing an overconfident model. Proposition 3.1 shows
that the discrepancy between the error approximation of the posterior probabilities is controlled by the
alignment between the posterior and this extreme prediction bias. In addition, by a simple application
of Cauchy-Schwartz in Eq. (7) and using the fact that |p|| = >",_, P < >_,_, Px = 1, we have
KL(p||s) < |le+||2- In particular, in the perfect situation where € = 0, e is equal to 0 and the
softmax probabilities perfectly approximate the posterior. In summary, Proposition 3.1 indicates that
not only the norm of the prediction bias but also its alignment to the posterior is responsible for the
approximation error of the posterior. In our setting, it means that logits-methods need a low prediction
bias on classes on which the model is confident such that softmax probabilities can be reliably used
to estimate accuracy. This follows our analysis and empirical verification from Section 4.

A real-world example. Although we usually tend to think that a high prediction bias shifts the
predicted posterior towards the uniform distribution, in the general case, other situations may happen
that hinder the quality of the accuracy estimation. For example, one may think of a letter recognition
task with a neural network pre-trained on the Latin alphabet and tested on the Cyrillic one. In this
case, some prediction probabilities will be adversarial as the neural network will not be aware of the
semantic differences between the Latin “B” and the Cyrillic “B”, therefore predicting a wrong class
with high probability.
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D.2 Choice of Threshold ®(D;.;) in Eq. (6)

To automatically select the appropriate normalization function in MANO (Algorithm 1), we introduced
a decision threshold @ (D;.t) equal, up to a constant, to the average KL divergence between the
uniform distribution and the predicted softmax probabilities. This stems from Tian et al. (2021) that
showed that this KL divergence was a measure of the model’s uncertainty. In this section, we provide
theoretical insights into this formulation by establishing the connection between ®(Di.st ) and the
misclassification error made on the test data. We first introduce the following lemma that is inspired
from Lemma 4 in Seldin and Tishby (2010).

Lemma D.1 (Change of measure inequality (Seldin and Tishby, 2010)). Let Z be a random
variable on {1,...,K} and p = () € Ag and v = (vi)r € Ak be two probability
distributions. For any measurable function y: Z — R, the following inequality holds:

S (k) < KL( || v) + In (Z " expw(k»).
k=1

k=1

Proof. We have

k=1 k=1 Vk k
s M us Vi
= In{ — | k))—
;MR H<Vk> + ;#k n<exp(¢( ))Nk>
K
=KL(u || v)+ Z pr In (exp(z/z(k))/ii) (Definition of KL(- || -))
k=1
K
<KL(p || v) + In (Z bk exp(z/;(k))/ji) (Jensen inequality)
k=1
K
=KL(u || v)+ ln< vy, exp(vjz(k‘))) .
k=1

Letu = 1k € Ak be the uniform probability. The test dataset writes Dyesy = {x;}1-, with
corresponding logits q; = f(x;) and ground-truth labels Viest = {¥; ZN=1 (unavailable in practice).
We denote the softmax probabilities by s° = softmax(q;) = exp(q;)/ Ele exp(q; )k € Ak.

We introduce the entropy of a probability vector as H(p) = —%’ Z,[f:l p.k'h.a(pk). In particular,
it is a measure of uncertainty and takes a high value on uncertain probabilities, i.e., close to the
uniform. We establish in the following proposition the connection between the criterion ®(Dyegt),
the miscalibration error, the model’s confidence, and its entropy.

Proposition D.2 (® (D, ), misclassification error, confidence and entropy). We have

1
f(DteSta ytest) +U(Dtest) + H(Dtest) S (I)(Dtest) —+ ln(e + ?),

misclassification confidence entropy criterion

where &(Diest, Viest) = & Yomq(1—=80), UDwest) = SN KL(u || s7), and
H(Diest) = % sz\il H(Sl)
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Proof. For a given test sample x; € Dyest, We first notice that

uz 1
L(u || s Zukln< )— Zln ) —In(si) = ln(K)—?

Similarly, we obtain KL(s® || u) = Zk:l st In(s}) + In(K'). Combining those results leads to

MN
=3
—
n
e
S~—

k=1

K
KL(u || s") + KL(s" | u) = —— Zln )+ Zs}c In(s},)

. . 1 . . .
= KL(s' [ u) = —KL(u || s) - - ];m(s@ +) “siln(st).
Consider the function ¢)(k) = I(y; # k) that takes the value 1 when y; # k and 0 otherwise. Using
Lemma D.1 with the measures g = s*, v = u and ¢, and the previous equation, we obtain

M-

S skl # 8) < KL | w) +1n (Z w exp(I(y; k>>>

k=1 k=1

K
= Zsk]l yi # k) < —KL(u || s%) KZln sh) +Zskln st) +1n<2ukexp ylyék))>

k=1 k=1 k=1

1« 1
= 1-s,, <-KL(uls") - o ;ln(sk) —H(s") —|—ln<K(Ke+ 1)) Qg si=1)
) ) 1

< 1-s) +KL(ul s’ + <——Zln —|—ln< K).

Summing over all the test samples and dividing by N leads to

1 N R TR\ 1 L&E 1
Nz:: 1—Syl Nz:: uHSZ)J'_N,L:lH(Sl)S_ﬁ;Z: Sk +ln<6+K>,

=®(Dyest)

which concludes the proof by using the notations introduced in Proposition D.2. O

Interpretation. The term &(Diest, Viest ), dubbed misclassification error, is the expected error on
the test set between the optimal probability on the true label (i.e., 1) and the predicted probability SZ.
It takes high values when the model makes a lot of mistakes and low values otherwise. U (Diest )
is the expected KL divergence on the test set between the predicted probabilities and the uniform
distribution and it measures the model’s confidence (Tian et al., 2021). It takes high values when
the predicted probabilities are far from the uniform (confidence) and low values when they are
close to the uniform (uncertain). H(Diest) is the expected entropy on the test set of the predicted
probabilities. It takes high values when predicted probabilities are close to the uniform and low values
otherwise. Finally, ®(D;.st ) is the criterion used in Eq. 6 to select the proper normalization function.
Proposition D.2 implies ®(D;est) can take high values in three situations (the case of few mistakes
but an uncertain model is ignored as it rarely happens in practice on such a challenging task):

1. &(Dtest, Vsest) is high, i.e., the model makes a lot of mistakes while being confident so
U (Dyest ) is high and H (Dyest ) is low;

2. &(Diest, Veest) 1s high, i.e., the model makes a lot of mistakes while being uncertain so
U (Dyest) is low and H (Diest ) is low;

3. &(Diest, Veest) 18 low, i.e., the model makes few mistakes and is confident so U (Diest ) is
high and H (Dyest ) is low.

In the normalization strategy SoftTrun used in MANO, we assume that a high ®(Dyg) indicates
that the model is confident, and vice-versa. Indeed, we consider that when ®(Dycs) < 7, uncertainty
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is high and we truncate the exponential to reduce error accumulation, while when ®(Dyegt) > 7,
the model can be trusted and complete information is used with the exact exponential (and we
recover the softmax). This corresponds to the last situation and follows the empirical evidence from
from Tian et al. (2021) that showed that this KL divergence was small when the uncertainty of the
model was high and large for confident models. While this does not cover all the situations, we
experimentally show the benefits of ®(Diest) and SoftTrun in Section 5 where MANO achieves
superior performance against 11 commonly used baselines for various architectures and types of
shifts on 12 datasets.

D.3 Choice of 7 in Eq. (6)

In all our experiments, we take 17 = 5 for the selection criterion in Eq. (6). We motivate this choice in
what follows. In our setting, we consider test samples x; € Diest drawn i.i.d. from the test distribution
pr. As the model f pre-trained on Dy, is a deterministic function, the logits q; are i.i.d. random

variables and the decision threshold ®(Dyest) = — 7 Zfil Zszl In (exp(qi) k/ Z]K:1 exp(q;) j)
is a random variable with mean . and variance v. Applying the Chebyshev’s inequality leads to

1

P(|®(Drest) — pf > vn) < 2

(11)

The threshold ®(Dyest) is used to determine how calibrated the model is on a given test dataset
Direst- Figure 2(b) shows that our proposed normalization is optimal in poorly calibrated datasets and
performs slightly below the softmax in calibrated situations. Hence, we can afford to be conservative
and we want to consider the model calibrated only for extreme values of ®(Diest). From Eq. (11),
taking 77 = 5 ensures that the probability that ®(D;. ) deviates from its mean by several standard
deviations with probability smaller than 5% (% < 0.05). It should be noted that we do not claim
the optimality of this choice nor the optimality of our automatic selection in Eq. (6). However, it is
particularly difficult to define decision rules in unsupervised and semi-supervised settings (Amini
et al., 2022). Moreover, using Eq. (6), MANO remains suitable even when test labels are not available
which is often the case in real-world applications, and we demonstrate state-of-the-art performance
for various architecture and types of shifts in Section 5.

D.4 Distance to the Hyperplane

Lemma D.3 (Dohmatob (2020)). Let w € R™ be non zero and b € R. The distance between
any point z € R™ and the hyperplane {x|w"x + b = 0} writes d(w,z) = |w ' x + b|/ [|w||.

Proof. The proof follows the geometric intuition from Dohmatob (2020). We recall it here for the
sake of self-consistency. The distance between z and the hyperplane # = {x € R"|wx +b =0}
is equal to the distance between z and its orthogonal projection on . We consider the line L =
{z + tw|t € R} that is orthogonal to # and passes through z. The desired orthogonal projection is
simply the point z + t*w such that L and H intersects, i.e., such that

W (z+tw) +b=02w'z+b=—t"||w|’
w'z+b

St = 5
[l

(lwll # 0)

It follows that the distance between z and H writes

2
[lwl]

T b T b
d(w,2) = |z — 2z + t'w| = HW H - M
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D.5 Proof of Theorem 3.3

Proof. Reusing the notations introduced in Section 3.2 and Algorithm 1, we have that

N
1 1 . .

S(f7 Dtest)p = ﬁ”QHﬁ = ﬁ Z“Qz‘lg (Deﬁmtlon of ||QHI))
i=1
N

1 o . .

T NK Z”U (ai)ll5 (Definition of Q; in Algorithm 1)

i=1

1 N
= % Z 1— (1= llo(as)lb)

1 pp-1 = 1 P
=K NK ; -1t letall)

A R tion of HT
= o(q;)) (Definition of H,,)
i=1

where a = % >0and b= % Rearranging the terms concludes the proof. O

D.6 Properties of ¢

The softmax can be decomposed as softmax(q) = exp(q)/ Zle exp(q)r = (poexp)(q), where
¢: RE — A writes ¢(u) = u/ 1, uy = u/||ul|;. We extend the domain of ¢ to R by setting
#»(0) = %]1 - The following proposition states the properties of ¢.

Proposition D.4 (Properties of ¢).

1. Generalized injectivity. Yu,v € RE \ {0}, ¢(u) = ¢(v) <= Ja eR*, st.u=av

2. Evaluation on constant inputs. Let u = ol i with o > 0. Then, we have ¢(u) = = 1.

Proof. We start by proving the first part of Proposition D.4. Letu,v € Rf \ 0. We have

_ w v s
o =0) = =L T
a>0

Then, we prove the second part of the proposition. Let o > 0 and consider u = alg € Rﬁf If
o = 0, then u = 0 and by definition, ¢(u) = ¢(0) = £ 1. Assuming a > 0, we have

u u o ‘1 1 1
= = = K= —41K.
(L FD DARE D B/ g K

¢(u)
O

The first part of the proposition is dubbed “generalized injectivity” as the injectivity can be retrieved
by fixing o = 1 in Proposition D.4. It ensures that ¢ only has equal outputs if the inputs are similar.
To illustrate that, consider the logits q,§ € RX. From Proposition D.4, having softmax(q) =
softmax(d) is equivalent to having exp(q) = aexp(d) for some « # 0. By positivity of both sides,
it implies o > 0, and taking the logarithm leads to q = & + In «v. It means that q is equal to d up to a
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Figure 7: Sensitivity analysis with Resnet18. (a) Effect of the L, norm types. (b) Impact of the
Taylor approximation order, i.e., the number of terms in Eq 4. For instance, an order of 3 means that 3
terms are taken, which corresponds to the default setting in Eq. (6) and is used in all our experiments.
(¢) Type of normalization function.

fixed constant. From a learning perspective, those logits will thus have the same predicted label and
the same normalized logits. Proposition D.4 shows that using ¢ preserves the information from the
neural network. In addition, if the neural network’s output is not informative,i.e., all entries are equal,
then the link function gives equal probability to all classes.

E Sensitivity Analysis and Ablation Study

E.1 Choice of L, Norm.

To reflect the impact of different L, norms on estimation performance, we conduct a sensitivity
study on 5 datasets with ResNet18, whose results are shown in Figure 7(a). The performance for
p = 1is ignored as in this case, ||Q||1 = 1 because Q is right-stochastic. We can see that when we
choose p € [2, 5], the results fluctuate within a satisfying range. This can be explained by the fact that
within this range, we emphasize adequately the large positive feature-to-boundary distances without
ignoring the other comparatively small distances.

E.2 Choice of Taylor Approximation order.

In Figure 7(b), we verify the impact of Taylor formula approximation on final accuracy estimation
performance. It should be noted that for orders higher than in the default setting in Eq. (6), the
positivity is lost. To alleviate this issue, we consistently remove for all orders the minimum value of
the obtained vector to each of its entries to ensure having an output in Rf . This extends de Brébisson
and Vincent (2016) to orders higher than 2. From this figure, we can see that when we reserve the first
three terms in the Taylor formula, the average estimation performance is optimal. For well-calibrated
datasets such as Office-Home and WILDS, there exists an increased trend of estimation performance
when we reserve more Taylor formula terms. As for suboptimal-calibrated datasets such as PACS
and Office-31, their performance rises when fewer terms are reserved. It empirically certifies that the
normalization technique is a trade-off tool between the ground-truth logits’ information and error
accumulation. In addition, the optimal choice is to keep 3 terms in Eq. (4) which motivates our
default setting in Eq (6).

E.3 Superiority of SoftTrun.

To verify the effectiveness of our proposed normalization technique, SoftTrun, we conduct an
ablation study by replacing our normalization with the softmax function under the natural shift.
In Figure 7(c), we observe that our proposed normalization significantly enhances the estimation
performance of datasets from the natural shift. Especially, R? for poorly-calibrated datasets such as
Office-31 is improved from 0.51 to 0.86.
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Figure 8: Comparison of generalization capability across four methods. Each subplot shows a linear
regression model fitted on ImageNet-C to predict accuracy on ImageNet-C'. Mean absolute error
(MAE) is calculated on ImageNet-C' (Mintun et al., 2021). All experiments use ResNet18.

E.4 Generalization Capabilities of MANO on ImageNet-C

To further demonstrate the generalization capability of MANO, we provide a similar experiment with
that in Section 5.3 on ImageNet-C and ImageNet-C' (Mintun et al., 2021) in Figure 8. In particular,
we fit a linear regression function on ImageNet-C and use the linear function to predict the accuracy
of ImageNet-C'. This figure shows that MANO has better estimation performance than the other
baselines when meeting different corruption types.
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