

NEC Laboratories America

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation

Weijian Deng¹ Yumin Suh² Stephen Gould¹ Liang Zheng¹ ¹Australian National University ²NEC Labs America

Classical Model Evaluation

i.i.d. assumption
1) train set and test set are independent from each other;
2) they are identically distributed;

Classical Model Evaluation

Training phase

Classical Model Evaluation

Training phase

Generalization evaluation

How well it performs well on new, previously unseen inputs?

Model Evaluation in Real-world Applications

Unsupervised Accuracy Estimation

Given a trained model, the goal is to predict its performance on unlabelled test sets

Deng, Weijian "Are Labels Necessary for Classifier Accuracy Evaluation?", In CVPR, 2021; TPAMI 2022

Accuracy Estimation with Classifier Prediction

• SoftMax scores of classifiers on unlabelled data are informative

Average Confidence (AC)

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR, 2017

Average Thresholded Confidence (ATC)

Garg, Saurabh, et al. "Leveraging unlabeled data to predict out-of-distribution performance." In ICLR, 2022

Difference of Confidence (DoC)

Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., & Schmidt. "Predicting with confidence on unseen distributions", In ICCV, 2021

Accuracy Estimation with Classifier Prediction

• Difference of Confidences encodes useful information about distribution shift

Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., & Schmidt. "Predicting with confidence on unseen distributions", In ICCV, 2021

Prediction Alone Is Not Sufficient

Predication score-based method cannot well capture the test sets in the low-accuracy region

Each point denote one test set from ImageNet-C

Prediction Alone Is Not Sufficient

• Classifiers tend to classify data into specific categories

CIFAR-10: predictions are mainly assigned to "cat", "boat", and "airplane".

Prediction Dispersity Is Also Informative

• **Confidence** reflects whether the individual prediction is certain

• **Dispersity** indicates how the predictions are distributed across all categories

Our key insight:

A well-performing model should give predictions with high confidence and dispersity

Prediction Dispersity Is Also Informative

Prediction Dispersity Score:

We first calculate the histogram of the number of the predicted class and then use entropy to measure the degree of balance

Characterizing Confidence and Dispersity

Nuclear norm has been shown to be effective in characterizing both properties

Cui, Shuhao, et al. "Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations." In CVPR, 2020

Prediction Matrix $P \in \mathbb{R}^{N_t \times K}$

N_t test samples, and K classes

Nuclear Norm: the sum of singular values of prediction matrix

Nuclear Norm Is Effective

Nuclear norm exhibits the highest correlation strength (R^2 and ρ) with OOD accuracy across three setups

Setup	Model	AC		ANE		ATC		DoC		Nuclear Norm	
		R^2	ρ	R^2	ρ	R^2	ρ	R^2	ρ	R^2	ρ
ImageNet	ViT	0.970	0.990	0.964	0.988	0.978	0.990	0.961	0.990	0.991	0.995
	BeiT	0.977	0.994	0.964	0.989	0.985	0.995	0.979	0.994	0.988	0.996
	Swin	0.794	0.929	0.732	0.909	0.815	0.935	0.791	0.929	0.949	0.961
	DenseNet	0.938	0.984	0.929	0.979	0.961	0.989	0.937	0.984	0.995	0.997
	Res152-BiT	0.891	0.981	0.877	0.979	0.916	0.982	0.908	0.981	0.981	0.991
	ConvNeXt	0.894	0.971	0.866	0.960	0.888	0.967	0.899	0.971	0.967	0.982
	Average	0.911	0.975	0.889	0.968	0.924	0.976	0.911	0.975	0.979	0.989
CIFAR-10	ResNet-20	0.916	0.991	0.916	0.991	0.934	0.992	0.937	0.991	0.989	0.995
	RepVGG-A0	0.811	0.982	0.806	0.981	0.841	0.985	0.824	0.982	0.992	0.996
	VGG-11	0.973	0.994	0.973	0.995	0.984	0.996	0.964	0.994	0.988	0.996
	Average	0.900	0.989	0.900	0.988	0.920	0.991	0.908	0.989	0.990	0.995
CUB-200	ResNet-50	0.836	0.942	0.839	0.939	0.855	0.957	0.818	0.942	0.989	0.997
	ResNet-101	0.303	0.734	0.319	0.739	0.351	0.775	0.308	0.734	0.987	0.998
	PMG	0.892	0.979	0.893	0.977	0.977	0.991	0.903	0.979	0.990	0.998
	Average	0.677	0.885	0.684	0.885	0.727	0.908	0.677	0.885	0.989	0.997

Nuclear Norm Is Effective

Nuclear norm exhibits the highest correlation strength (R^2 and ρ) with OOD accuracy across three setups

Nuclear Norm Is Effective

Nuclear norm exhibits the highest correlation strength (R^2 and ρ) with OOD accuracy across three setups

Point1: Nuclear Norm assumes the class distribution is roughly uniform

Observations:

- 1) Other methods are stable under class imbalance;
- 2) Nuclear Norm is resistant to moderate class imbalance;

3) Nuclear Norm is less effective under severe class imbalance;

Point2: Estimate class distribution using BBSE

Lipton, Z., Wang, Y.-X., and Smola, A. Detecting and correcting for label shift with black box predictors. In ICML, 2018

Make Nuclear Norm focus on major classes instead of all classes: it helps

Nuclear Norm

Rectified Nuclear Norm

Average Thresholded Confidence

Point3: Accurately characterize the class-specific prediction dispersity

If we have **prior knowledge** about the imbalanced class distribution, we can expect class predictions to follow it rather than a uniform one.

Point3: Accurately characterize the class-specific prediction dispersity

If we have **prior knowledge** about the imbalanced class distribution, we can expect class predictions to follow it rather than a uniform one.

Mutual Information Maximizing

By default, this term encourages the predictions to be globally balanced

Potential Improvements: revise it to align with the known class distribution

Summary

- Prediction dispersity is a useful property that correlates strongly with classifier accuracy on various test sets
- Considering both prediction confidence and dispersity using nuclear norm to achieve more accurate accuracy estimations
- Nuclear Norm is resistant to moderate class imbalance

Future work:

estimating class distribution for better characterizing prediction dispersity $\sqrt{2}$

Thank you!

For more information, please refer to https://weijiandeng.xyz

