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Abstract

Person re-identification (re-ID) models trained on one

domain often fail to generalize well to another. In our at-

tempt, we present a “learning via translation” framework.

In the baseline, we translate the labeled images from source

to target domain in an unsupervised manner. We then

train re-ID models with the translated images by supervised

methods. Yet, being an essential part of this framework, un-

supervised image-image translation suffers from the infor-

mation loss of source-domain labels during translation.

Our motivation is two-fold. First, for each image, the

discriminative cues contained in its ID label should be

maintained after translation. Second, given the fact that two

domains have entirely different persons, a translated image

should be dissimilar to any of the target IDs. To this end,

we propose to preserve two types of unsupervised similari-

ties, 1) self-similarity of an image before and after transla-

tion, and 2) domain-dissimilarity of a translated source im-

age and a target image. Both constraints are implemented

in the similarity preserving generative adversarial network

(SPGAN) which consists of an Siamese network and a Cy-

cleGAN. Through domain adaptation experiment, we show

that images generated by SPGAN are more suitable for do-

main adaptation and yield consistent and competitive re-ID

accuracy on two large-scale datasets.

1. Introduction

This paper considers domain adaptation in person re-ID.

The re-ID task aims at searching for the relevant images to

the query. In our setting, the source domain is fully an-

notated, while the target domain does not have ID labels.

In the community, domain adaptation of re-ID is gaining

increasing popularity, because 1) of the expensive labeling

process and 2) when models trained on one dataset are di-

rectly used on another, the re-ID accuracy drops dramati-
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Figure 1: Illustration of self-similarity and domain-

dissimilarity. In each triplet, left: an source-domain image,

middle: a source-target translated version of the source im-

age, right: an arbitrary target-domain image. We require

that 1) a source image and its translated image should con-

tain the same ID, i.e., self-similarity, and 2) the translated

image should be of a different ID with any target image,

i.e., domain dissimilarity. Note: the source and target do-

mains contain entirely different IDs.

cally [6] due to dataset bias [41]. Therefore, supervised,

single-domain re-ID methods may be limited in real-world

scenarios, where domain-specific labels are not available.

A common strategy for this problem is unsupervised do-

main adaptation (UDA). But this line of methods assume

that the source and target domains contain the same set of

classes. Such assumption does not hold for person re-ID be-

cause different re-ID datasets usually contain entirely differ-

ent persons (classes). In domain adaptation, a recent trend

consists in image-level domain translation [18, 4, 28]. In

the baseline approach, two steps are involved. First, la-

beled images from the source domain are transferred to the

target domain, so that the transferred image has a similar

style with the target. Second, the style-transferred images

and their associated labels are used in supervised learning

in the target domain. In literature, commonly used style

transfer methods include [27, 22, 48, 57]. In this paper, we

use CycleGAN [57] following the practice in [27, 18].

In person re-ID, there is a distinct yet unconsidered re-
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Figure 2: Pipeline of the “learning via translation” framework. First, we translate the labeled images from a source domain

to a target domain in an unsupervised manner. Second, we train re-ID models with the translated images using supervised

feature learning methods. The major contribution consists in the first step, i.e., similarity preserving image-image translation.

quirement for the baseline described above: the visual con-

tent associated with the ID label of an image should be pre-

served after image-image translation. In our scenario, such

visual content usually refers to the underlying (latent) ID in-

formation for a foreground pedestrian. To meet this require-

ment tailored for re-ID, we need additional constraints on

the mapping function. In this paper, we propose a solution

to this requirement, motivated from two aspects. First, a

translated image, despite of its style changes, should contain

the same underlying identity with its corresponding source

image. Second, in re-ID, the source and target domains con-

tain two entirely different sets of identities. Therefore, a

translated image should be different from any image in the

target dataset in terms of the underlying ID.

This paper introduces the Similarity Preserving cycle-

consistent Generative Adversarial Network (SPGAN), an

unsupervised domain adaptation approach which generates

images for effective target-domain learning. SPGAN is

composed of an Siamese network (SiaNet) and a Cycle-

GAN. Using a contrastive loss, the SiaNet pulls close a

translated image and its counter part in the source, and push

away the translated image and any image in the target. In

this manner, the contrastive loss satisfies the specific re-

quirement in re-ID. Note that, the added constraint is unsu-

pervised, i.e., the source labels are not used during domain

adaptation. During training, in each mini-batch (batch size

= 1), a training image is firstly used to update the Genera-

tor (of CycleGAN), then the Discriminator (of CycleGAN),

and finally the layers in SiaNet. Through the coordination

between CycleGAN and SiaNet, we are able to generate

samples which not only possess the style of target domain

but also preserve their underlying ID information.

Using SPGAN, we are able to create a dataset on the tar-

get domain in an unsupervised manner. The dataset inherits

the labels from the source domain and thus can be used in

supervised learning in the target domain. The contributions

of this work are summarized below:

• Minor contribution: we present a “learning via transla-

tion” baseline for domain adaptation in person re-ID.

• Major contribution: we introduce SPGAN to improve

the baseline. SPGAN works by preserving the under-

lying ID information during image-image translation.

2. Related Work

Image-image translation. Image-image translation

aims at constructing a mapping function between two do-

mains. A representative method is the conditional GAN

[20], which using paired training data produces impressive

transition results. However, the paired training data is of-

ten difficult to acquire. Unpaired image-image translation

is thus more applicable. To tackle unpaired settings, a cy-

cle consistency loss is introduced by [22, 48, 57]. In [3], an

unsupervised distance loss is proposed for one side domain

mapping. In [27], a general framework is proposed by mak-

ing a shared latent space assumption. A camera style adap-

tation method [56] is proposed for re-ID based on Cycle-

GAN. Our work aims to find a mapping function between

the source domain and target domain, and we are more con-

cerned with similarity preserving translation.

Neural style transfer [12, 23, 43, 21, 5, 24, 19, 25] is

another strategy of image-image translation, which aims at

replicating the style of one image, while our work focuses

on learning the mapping function between two domains,

rather than two images.

Unsupervised domain adaptation. Our work relates

to unsupervised domain adaptation (UDA) where no la-

beled target images are available during training. In this

community, some methods aim to learn a mapping be-

tween source and target distributions [37, 13, 9, 38]. Cor-

relation Alignment (CORAL) [38] proposes to match the

mean and covariance of two distributions. Recent meth-

ods [18, 4, 28] use an adversarial approach to learn a trans-

formation in the pixel space from one domain to another.

Other methods seek to find a domain-invariant feature space

[34, 31, 10, 30, 42, 11, 2]. Long et al. [30] and Tzeng et al.

[42] use the Maximum Mean Discrepancy (MMD) [15] for

this purpose. Ganin et al. [11] and Ajakan et al. [2] in-

troduce a domain confusion loss to learn domain-invariant

features. Different from the settings in this paper, most of

the UDA methods assume that class labels are the same

across domains, while different re-ID datasets contain en-

tirely different person identities (classes). Therefore, the

approaches mentioned above can not be utilized directly for

domain adaptation in re-ID.

Unsupervised person re-ID. Hand-craft features [32,

14, 7, 33, 26, 51] can be directly employed for unsupervised
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re-ID. But these feature design methods do not fully exploit

rich information from data distribution. Some methods are

based on saliency statistics [50, 44]. In [49], K-means clus-

tering is used for learning an unsupervised asymmetric met-

ric. Peng et al. [35] propose an asymmetric multi-task dic-

tionary learning for cross-data transfer.

Recently, several works focus on label estimation of un-

labeled target dataset. Ye et al. [47] use graph matching for

cross-camera label estimation. Fan et al. [6] propose a pro-

gressive method based on the iterations between K-means

clustering and IDE [52] fine-tuning. Liu et al. [29] employ a

reciprocal search process to refine the estimated labels. Wu

et al. [46] propose a dynamic sampling stragy for one-shot

video-based re-ID. Our work seeks to learn re-ID models

that can be utilized directly to target domain, and can po-

tentially cooperate with label estimation methods in model

initialization. Finally, we would like to refer the reader to

the concurrent work named TJ-AIDL [45] that utilizes ad-

ditional attribute annotation to learn a feature representation

space for the unlabeled target dataset.

3. Proposed Method

3.1. Baseline Overview

Given an annotated dataset S from source domain and

unlabeled dataset T from target domain, our goal is to use

the labeled source images to train a re-ID model that gener-

alizes well to target domain. Figure 2 presents a pipeline of

the “learning via translation” framework, which consists of

two steps, i.e., source-target image translation for training

data creation, and supervised feature learning for re-ID.

• Source-target image translation. Using a generative

function G(·) that translates the annotated dataset S
from the source domain to target domain in an unsu-

pervised manner, we “create” a labeled training dataset

G(S) on the target domain. In this paper, we use Cy-

cleGAN [57], following the practice in [27, 18].

• Feature learning. With the translated dataset G(S)
that contains labels, feature learning methods are ap-

plied to train re-ID models. Specifically, we adopt the

same setting as [52], in which the rank-1 accuracy and

mAP on the fully-supervised Market-1501 dataset is

75.8% and 52.2%.

The focus of this paper is to improve Step 1, so that with

better training samples, the overall re-ID accuracy can be

improved. The experiment will validate the proposed Step

2 (Gsp(·)) on several feature learning methods. A brief

summary of different methods considered in this paper is

presented in Table 1. We denote the method “Direct Trans-

fer” as directly using the training set S instead of G(S) for

model learning. This method yields the lowest accuracy be-

cause the style difference between the source and target is

Method Train. Set Test. Set Accuracy

Supervised Ttrain Ttest +++++

Direct Transfer Strain Ttest ++

CycleGAN (basel.) G(Strain) Ttest +++

SPGAN Gsp(Strain) Ttest ++++

Table 1: A brief summary of different methods considered

in this paper. “G” and “Gsp” denote the Generator in Cy-

cleGAN and SPGAN, respectively. Strain, Ttrain, Ttest de-

note the training set of the source dataset, the training set

and testing set of the target dataset, respectively.

not resolved (to be shown in Table 2). Using CycleGAN

and SPGAN to generate a new training set, which is more

style-consistent with the target, yields improvement.

3.2. SPGAN: Approach Details

3.2.1 CycleGAN Revisit

CycleGAN introduces two generator-discriminator pairs,

{G,DT } and {F,DS}, which map a sample from source

(target) domain to target (source) domain and produce a

sample that is indistinguishable from those in the target

(source) domain, respectively. For generator G and its as-

sociated discriminator DT , the adversarial loss is

LT adv(G,DT , px, py) =Ey∼py
[(DT (y)− 1)2]

+ Ex∼px
[(DT (G(x))2],

(1)

where px and py denote the sample distributions in the

source and target domain, respectively. For generator F and

its associated discriminator DS , the adversarial loss is

LSadv(F,DS , py, px) =Ex∼px
[(DS(x)− 1)2]

+ Ey∼py
[(DS(F (y))2].

(2)

Considering there exist infinitely many alternative map-

ping functions due to the lack of paired training data, Cy-

cleGAN introduces a cycle-consistent loss, which attempts

to recover the original image after a cycle of translation and

reverse translation, to reduce the space of possible mapping

functions. The cycle-consistent loss is

Lcyc(G,F ) =Ex∼px
[‖F (G(x))− x‖

1
]

+ Ey∼py
[‖G(F (y))− y‖

1
].

(3)

Apart from cycle-consistent loss and adversarial loss, we

use the target domain identity constraint [40] as an auxil-

iary for image-image translation. Target domain identity

constraint is introduced to regularize the generator to be the

identity matrix on samples from target domain, written as

Lide(G,F, px, py) =Ex∼px
‖F (x)− x‖

1

+ Ey∼py
‖G(y)− y‖

1
.

(4)
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Figure 3: SPGAN consists of two components: an SiaNet

(top) and CycleGAN (bottom). CycleGAN learns mapping

functions G and F between two domains, and the SiaNet

learns a latent space that constrains the learning procedure

of mapping functions.

As mentioned in [57], generators G and F may change

the color of input images without Lide. In experiment, we

observe that model may generate unreal results without Lide

(Fig. 4(b)). This is undesirable for re-ID feature learning.

Thus, we use Lide to preserve the color composition be-

tween the input and output (see Section 4.3).

3.2.2 SPGAN

Applied in person re-ID, similarity preserving is an essential

function to generate improved samples for domain adapta-

tion. As analyzed in Section 1, we aim to preserve the ID-

related information for each translated image. We empha-

size that such information should not be the background or

image style, but should be underlying and latent. To fulfill

this goal, we integrate a SiaNet with CycleGAN, as shown

in Fig 3. During training, CyleGAN is to learn a mapping

function between two domains, and SiaNet is to learn a la-

tent space that constrains the learning of mapping function.

Similarity preserving loss function. We utilize the con-

trastive loss [16] to train SiaNet:

Lcon(i, x1, x2) =(1− i){max(0,m− d)}2 + id2, (5)

where x1 and x2 are a pair of input vectors, d denotes the

Euclidean distance between normalized embeddings of two

input vectors, and i represents the binary label of the pair.

i = 1 if x1 and x2 are positive pair; i = 0 if x1 and x2

are negative pair. m ∈ [0, 2] is the margin that defines the

separability in the embedding space. When m = 0, the loss

of negative training pair is not back-propagated in the sys-

tem. When m > 0, both positive and negative sample pairs

are considered. A larger m means that the loss of negative

training samples has a higher weight in back propagation.

Training image pair selection. In Eq. 5, the con-

trastive loss uses binary labels of input image pairs. The

design of the pair similarities reflects the “self-similarity”

and “domain-dissimilarity” principles. Note that, we select

training pairs in an unsupervised manner, so that we use

the contrastive loss without additional annotations.

Formally, CycleGAN has two generators, i.e., genera-

tor G which maps source-domain images to the style of the

target domain, and generator F which maps target-domain

images to the style of the source domain. Suppose two sam-

ples denoted as xS and xT come from the source domain

and target domain, respectively. Given G and F , we define

two positive pairs: 1) xS and G(xS), 2) xT and F (xT ). In

either image pair, the two images contain the same person;

the only difference is that they have different styles. In the

learning procedure, we encourage the whole network to pull

these two images close.

On the other hand, for generators G and F , we also de-

fine two types of negative training pairs: 1) G(xS) and xT ,

2) F (xT ) and xS . Such design of negative training pairs

is based on the prior knowledge that datasets in different

re-ID domains have entirely different sets of IDs. Thus, a

translated image should be of different ID from any target

image. In this manner, the network pushes two dissimilar

images away. Training pairs are shown in Fig. 1. Some

positive pairs are also shown in (a) and (d) of each column

in Fig. 4.

Overall objective function. The final SPGAN objective

can be written as

Lsp = LT adv + LSadv + λ1Lcyc + λ2Lide + λ3Lcon,

(6)

where λt, t ∈ {1, 2, 3} controls the relative importance of

four objectives. The first three losses belong to the Cycle-

GAN formulation [57], and the contrastive loss induced by

SiaNet imposes a new constraint on the system.

SPGAN training procedure. In the training phase, SP-

GAN are divided into three components which are learned

alternately, the generators, discriminators and SiaNet.

When the parameters of two components are fixed, the pa-

rameters of the third component is updated. We train the

SPGAN until the convergence or the maximum iterations.

3.3. Feature Learning

Feature learning is the second step of the “learning via

translation” framework. Once we have style-transferred

dataset G(S) composed of the translated images and their

associated labels, the feature learning step is the same as

supervised methods. Since we mainly focus on Step 1

(source-target image translation), we adopt the baseline ID-

discriminative Embedding (IDE) following the practice in

[52, 53, 54]. We employ ResNet-50 [17] as the base model
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(a)
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(c)
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Market      Duke Duke Market

Figure 4: Visual examples of image-image translation. The

left four columns map Market images to the Duke style,

and the right four columns map Duke images to the Market

style. From top to bottom: (a) original image, (b) output of

CycleGAN, (c) output of CycleGAN + Lide, and (d) output

of SPGAN. Images produced by SPGAN have the target

style while preserving the ID information in the source.

pooling

concat

conv5 feature maps

7×4×2048

7×4×2048

7×7×2048

pooling

partition

1×1×2048

1×1×2048

1×1×4096

Figure 5: Illustration of LMP. We partition the feature map

into P (P = 2) parts horizontally. We conduct global

max/avg pooling on each part and concatenate the feature

vectors as the final representation.

and only modify the output dimension of the last fully-

connected layer to the number of training identities. During

testing, given an input image, we can extract the 2,048-dim

Pool5 vector for retrieval under the Euclidean distance.

Local Max Pooling. To further improve re-ID perfor-

mance on the target dataset T , we introduce a feature pool-

ing method named as local max pooling (LMP). It works

on a well-trained IDE model and can reduce the impact of

noisy signals incurred by the fake translated images. In the

original ResNet-50, global average pooling (GAP) is con-

ducted on Conv5. In our proposal (Fig. 5), we first par-

tition the Conv5 feature maps to P parts horizontally, and

then conduct global max/avg pooling on each part. Finally,

Market images to Duke styleMarket images 

Duke images to Market styleDuke images 

Figure 6: Sample images of (upper left:) DukeMTMC-reID

dataset, (lower left:) Market-1501 dataset, (upper right:)

Duke images which are translated to Market style, and

(lower right:) Market images translated to Duke style. We

use SPGAN for unpaired image-image translation.

we concatenate the output of global max pooling (GMP) or

GAP of each part as the final feature representation. The

procedure is nonparametric, and can be directly used in the

testing phase. In the experiment, we will compare local max

pooling and local average pooling, and demonstrate the su-

periority of the former (LMP).

4. Experiment

4.1. Datasets

We select two large-scale re-ID datasets for experiment,

i.e., Market-1501 [51] and DukeMTMC-reID [36, 53].

Market-1501 is composed of 1,501 identities, 12,936 train-

ing images and 19,732 gallery images (with 2,793 distrac-

tors). It is split into 751 identities for training and 750 iden-

tities for testing. Each identity is captured by at most 6

cameras. All the bounding boxes are produced by DPM [8].

DukeMTMC-reID is a re-ID version of the DukeMTMC

dataset [36]. It contains 34,183 image boxes of 1,404 iden-

tities: 702 identities are used for training and the remain-

ing 702 for testing. There are 2,228 queries and 17,661

database images. For both datasets, we adopt rank-1 ac-

curacy and mAP for re-ID evaluation [51]. Sample images

of the two datasets are shown in Fig.6.

4.2. Implementation Details

SPGAN training and testing. We use Tensorflow [1]

to train SPGAN using the training images of Market-1501

and DukeMTMC-reID. Note that, we do not use any ID an-

notation during training procedure. In all experiments, we
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Methods
DukeMTMC-reID Market-1501

rank-1 rank-5 rank-10 rank-20 mAP rank-1 rank-5 rank-10 rank-20 mAP

Supervised Learning 66.7 79.1 83.8 88.7 46.3 75.8 89.6 92.8 95.4 52.2

Direct Transfer 33.1 49.3 55.6 61.9 16.7 43.1 60.8 68.1 74.7 17.0

CycleGAN (basel.) 38.1 54.4 60.5 65.9 19.6 45.6 63.8 71.3 77.8 19.1

CycleGAN (basel.) + Lide 38.5 54.6 60.8 66.6 19.9 48.1 66.2 72.7 80.1 20.7

SPGAN (m = 0) 37.7 53.1 59.5 65.6 20.0 49.2 66.9 74.0 80.0 20.5

SPGAN (m = 1) 39.5 55.0 61.4 67.3 21.0 48.7 65.7 73.0 79.3 21.0

SPGAN (m = 2) 41.1 56.6 63.0 69.6 22.3 51.5 70.1 76.8 82.4 22.8

SPGAN (m = 2) + LMP 46.9 62.6 68.5 74.0 26.4 58.1 76.0 82.7 87.9 26.9

Table 2: Comparison of various methods on the target domains. When tested on DukeMTMC-reID, Market-1501 is used

as source, and vice versa. “Supervised learning” denotes using labeled training images on the corresponding target dataset.

“Direct Transfer” means directly applying the source-trained model on the target domain (see Section 3.1). By varying m

specified in Eq. 5, the sensitivity of SPGAN to the relative importance of the positive and negative pairs is shown. When

local max pooling (LMP) is applied, the number of parts is set to 7. We use IDE [52] for feature learning.

empirically set λ1 = 10, λ2 = 5, λ3 = 2 in Eq. 6 and

m = 2 in Eq. 5. With an initial learning rate 0.0002,

and model stop training after 5 epochs. During the test-

ing procedure, we employ the Generator G for Market-

1501 → DukeMTMC-reID translation and the Generative

F for DukeMTMC-reID → Market-1501 translation. The

translated images are used to fine-tune the model trained on

source images.

For CycleGAN, we adopt the architecture released by its

authors. For SiaNet, it contains 4 convolutional layers, 4

max pooling layers and 1 fully connected (FC) layer, con-

figured as below. (1) Conv. 4× 4, stride = 2, #feature maps

= 64; (2) Max pooling 2 × 2, stride = 2; (3) Conv. 4 × 4,

stride = 2, #feature maps = 128; (4) Max pooling 2 × 2,

stride = 2; (5) Conv. 4 × 4, stride = 2, feature maps = 256;

(6) Max pool 2 × 2, stride = 2; (7) Conv. 4 × 4, stride = 2,

#feature maps = 512; (8) Max pooling 2× 2, stride = 2; (9)

FC, output dimension = 128.

Feature learning for re-ID. As described in Section 3.3,

we adopt IDE for feature learning. Specifically, ResNet-50

[17] pretrained on ImageNet is used for fine-tuning on the

translated training set. We modify the output of the last

fully-connected layer to 751 and 702 for Market-1501 and

DukeMTMC-reID, respectively. We use mini-batch SGD to

train CNN models on a Tesla K80 GPU. Training parame-

ters such as batch size, maximum number epochs, momen-

tum and gamma are set to 16, 50, 0.9 and 0.1, respectively.

The initial learning rate is set as 0.001, and decay to 0.0001

after 40 epochs.

4.3. Evaluation

Comparison between supervised learning and direct

transfer. The supervised learning method and the direct

transfer method are specified in Table 1. When comparing

the two methods in Table 2, we can clearly observe a large

performance drop when directly using a source-trained

model on the target domain. For instance, the ResNet-50

model trained and tested on Market-1501 achieves 75.8%
in rank-1 accuracy, but drops to 43.1% when trained on

DukeMTMC-reID and tested on Market-1501. A similar

drop can be observed when DukeMTMC-reID is used as

the target domain, which is consistent with the experiments

reported in [6]. The reason behind the performance drop is

the bias of data distributions in different domains.

The effectiveness of the “learning via translation”

baseline using CycleGAN. In this baseline domain adap-

tation approach (Section 3.1), we first translate the label

images from the source domain to the target domain and

then use the translated images to train re-ID models. As

shown in Table 2, this baseline framework effectively im-

proves the re-ID performance in the target dataset. Com-

pared to the direct transfer method, the CycleGAN transfer

baseline gains +2.5% improvements in rank-1 accuracy on

Market-1501. When tested on DukeMTMC-reID, the per-

formance gain is +5.0% in rank-1 accuracy. Through such

an image-level domain adaptation method, effective domain

adaptation baselines can be learned.

The impact of the target domain identity constraint.

We conduct experiment to verify the influence of the iden-

tity loss on performance in Table 2. We arrive at mixed

observations. On the one hand, on DukeMTMC-reID, com-

pared with the CycleGAN baseline, CycleGAN + Lide

achieves similar rank-1 accuracy and mAP. On the other

hand, on Market-1501, CycleGAN + Lide gains +2.5% and

1.6% improvement in rank-1 accuracy and mAP, respec-

tively. The reason is that Market-1501 has a larger inter-

camera variance. When translating Duke images to the Mar-

ket style, the translated images may be more prone to trans-

lation errors induced by the camera variances. Therefore,

the identity loss is more effective when Market is the target
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Figure 7: Domain adaptation performance with differ-

ent feature learning methods, including IDE (Section 3.3),

IDE+ [55], and SVDNet [39]. Three domain adaptation

methods are compared, i.e., direct transfer, CycleGAN with

identity loss, and the proposed SPGAN. The results are on

Market-1501.

domain. As shown in Fig. 4, this loss prevents CycleGAN

from generating strangely colored images.

SPGAN effect. On top of the CycleGAN baseline, we

replace CycleGAN with SPGAN (m = 2). The effec-

tiveness of the proposed similarity preserving constraint

can be seen in Table 2. Compared with Cycle + Lide,

on DukeMTMC-reID, the similarity preserving constraint

leads to +2.6% and +2.4% improvement over CycleGAN +

Lide in rank-1 accuracy and mAP, respectively. On Market-

1501, the gains are +3.4% and 2.1%. The working mech-

anism of SPGAN consists in preserving the underlying vi-

sual cues associated with the ID labels. The consistent im-

provement suggests that this working mechanism is critical

for generating suitable samples for training in the target do-

main. Examples of translated images by SPGAN are shown

in Fig. 6.

Comparison of different feature learning methods. In

Step 2, we evaluate three feature learning methods, i.e., IDE

[52] (described in Section 3.3), IDE+ [55], and SVDNet

[39]. Results are shown in Fig. 7. An interesting observa-

tion is that, while IDE+ and SVDNet are superior to IDE

under the scenario of “Direct Transfer”, the three learning

methods are basically on par with each other when using

training samples generated by SPGAN. A possible expla-

nation is that some translated images are noisy, which has a

large effect on better learning methods.

Sensitivity of SPGAN to key parameters. The margin

m defined in Eq. 5 is a key parameter. If m = 0, the loss of

negative pairs is not back propagated. If m gets larger, the

weight of negative pairs in loss calculation increases. We

conduce experiment to verify the impact of m, and results

are shown in Table 2. When turning off the contribution of

negative pairs in Eq. 5, (m = 0), SPGAN only marginally

improves the accuracy on Market-1501, and even compro-

mises the system on Duke. When increasing m to 2, we

have much superior accuracy. It indicates that the negative

pairs are critical to the system.
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Figure 8: λ3 (Eq. 6) v.s re-ID accuracy. A larger λ3 means

larger weight of similarity preserving constraint.

#parts mode dim
DukeMTMC-reID Market-1501

rank-1 mAP rank-1 mAP

1
Avg

2048
41.1 22.3 51.5 22.8

Max 44.3 25.0 55.7 21.8

2
Avg

4096
42.3 23.3 54.4 25.0

Max 45.6 25.5 57.3 26.2

3
Avg

6144
43.1 23.6 54.9 25.5

Max 45.5 25.6 57.4 26.4

7
Avg

14336
44.2 24.4 56.0 26.1

Max 46.9 26.4 58.1 26.9

Table 3: Performance of various pooling strategies with dif-

ferent numbers of parts (P ) and pooling modes (maximum

or average) over SPGAN. The best results are in bold.

Moreover, we evaluate the impact of λ3 in Eq. 6 on

Market-1501. λ3 controls the relative importance of the

proposed similarity preserving constraint. As shown in Fig.

9, the proposed constraint is proven effective when com-

pared to λ3 = 0, but a larger λ3 does not bring more gains

in accuracy. Specifically, λ3 = 2 yields the best accuracy.

Local max pooling. We apply the LMP on the Conv5

layer to mitigate the influence of noise. Note that LMP

is directly adopted in the feature extraction step for testing

without fine-tuning. We empirically study how the number

of parts and the pooling mode affect the performance. Ex-

periment is conducted on SPGAN. The performance of var-

ious numbers of parts (P = 1, 2, 3, 7) and different pooling

modes (max or average) is provided in Table 3. When we

use average pooling and P = 1, we have the original GAP

used in ResNet-50. From these results, we speculate that

with more parts, a finer partition leads to higher discrimina-

tive descriptors and thus higher re-ID accuracy.

Moreover, we test LMP on supervised learning and do-

main adaptation scenarios with three feature learning meth-

ods, i.e., IDE [52], IDE+ [55], and SVDNet [39]. As shown

in Fig. 9, LMP does not guarantee stable improvement on

supervised learning as observed in “IDE+” and SVDNet.

However, when applied in the scenario of domain adap-

tation, LMP yields improvement over IDE, IDE+, and
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Figure 9: Experiment of LMP (P = 7) on scenarios of su-

pervised learning and domain adaptation with SPGAN and

Cycle + Lide. Three feature learning methods are com-

pared, i.e., IDE [52], IDE+ [55], and SVDNet [39]. The

results are on Market-1501.

Methods
Market-1501

Setting Rank-1 Rank-5 Rank-10 mAP

Bow [51] SQ 35.8 52.4 60.3 14.8

LOMO [26] SQ 27.2 41.6 49.1 8.0

UMDL [35] SQ 34.5 52.6 59.6 12.4

PUL [6]* SQ 45.5 60.7 66.7 20.5

Direct transfer SQ 43.1 60.8 68.1 17.0

Direct transfer MQ 47.9 65.5 73.0 20.6

CAMEL [49] MQ 54.5 - - 26.3

SPGAN SQ 51.5 70.1 76.8 22.8

SPGAN MQ 57.0 73.9 80.3 27.1

SPGAN+LMP SQ 58.1 76.0 82.7 26.9

Table 4: Comparison with state-of-the-art on Market-1501.

* denotes unpublished papers. “SQ” and “MQ” are the

single-query and multiple-query settings, respectively. The

best results are in bold.

SVDNet. The superiority of LMP probably lies in that max

pooling filters out some detrimental signals in the descriptor

induced by noisy translated images.

4.4. Comparison with Stateoftheart Methods

We compare the proposed method with the state-of-

the-art unsupervised learning methods on Market-1501 and

DukeMTMC-reID in Table 4 and Table 5, respectively.

Market-1501. On Market-1501, we first compare our

results with two hand-crafted features, i.e., Bag-of-Words

(BoW) [51] and local maximal occurrence (LOMO) [26].

Those two hand-crafted features are directly applied on test

dataset without any training process, their inferiority can be

clearly observed. We also compare existing unsupervised

methods, including the Clustering-based Asymmetric MEt-

ric Learning (CAMEL) [49], the Progressive Unsupervised

Learning (PUL) [6], and UMDL [35]. The results of UMDL

are reproduced by Fan et al. [6]. In the single-query setting,

we achieve rank-1 accuracy = 51.5% and mAP = 22.8%. It

outperforms the second best method [6] by +6.0% in rank-1

Methods
DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP

Bow [51] 17.1 28.8 34.9 8.3

LOMO [26] 12.3 21.3 26.6 4.8

UMDL [35] 18.5 31.4 37.6 7.3

PUL [6]* 30.0 43.4 48.5 16.4

Direct transfer 33.1 49.3 55.6 16.7

SPGAN 41.1 56.6 63.0 22.3

SPGAN+LMP 46.9 62.6 68.5 26.4

Table 5: Comparison with state-of-the-art on DukeMTMC-

reID under the single-query setting. * denotes unpublished

papers. The best results are in bold.

accuracy. In the multiple-query setting, we arrive at rank-

1 accuracy = 57.0%, which is +2.5% higher than CAMEL

[49]. The comparisons indicate the competitiveness of the

proposed method on Market-1501.

DukeMTMC-reID. On DukeMTMC-reID, we compare

the proposed method with BoW [51], LOMO [26], UMDL

[35], and PUL [6] under the single-query setting (there is no

multiple-query setting in DukeMTMC-reID). The result ob-

tained by the proposed method is rank-1 accuracy = 41.1%,

mAP = 22.3%. Compared with the second best method, i.e.,

PUL [6], our result is +11.1% higher in rank-1 accuracy.

Therefore, the superiority of SPGAN can be concluded.

5. Conclusion

This paper focuses on domain adaptation in person re-

ID. When models trained on one dataset are directly trans-

ferred to another dataset, the re-ID accuracy drops dramati-

cally due to dataset bias. To achieve improved performance

in the new dataset, we present a “learning via translation”

framework for domain adaptation, characterized by 1) un-

supervised image-image translation and 2) supervised fea-

ture learning. We further propose that the underlying (la-

tent) ID information for the foreground pedestrian should

be preserved after image-image translation. To meet this re-

quirement tailored for re-ID, we introduce the unsupervised

self-similarity and domain-dissimilarity for similarity pre-

serving image generation (SPGAN). We show that SPGAN

better qualifies the generated images for domain adaptation

and yields consistent improvement over the CycleGAN.
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