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Abstract

Deep domain adaptation methods can reduce the distri-
bution discrepancy by learning domain-invariant embed-
ddings. However, these methods only focus on aligning
the whole data distributions, without considering the class-
level relations among source and target images. Thus, a
target embeddings of a bird might be aligned to source em-
beddings of an airplane. This semantic misalignment can
directly degrade the classifier performance on the target
dataset. To alleviate this problem, we present a similarity
constrained alignment (SCA) method for unsupervised do-
main adaptation. When aligning the distributions in the em-
bedding space, SCA enforces a similarity-preserving con-
straint to maintain class-level relations among the source
and target images, i.e., if a source image and a target
image are of the same class label, their corresponding
embeddings are supposed to be aligned nearby, and vise
versa. In the absence of target labels, we assign pseudo
labels for target images. Given labeled source images
and pseudo-labeled target images, the similarity-preserving
constraint can be implemented by minimizing the triplet
loss. With the joint supervision of domain alignment loss
and similarity-preserving constraint, we train a network to
obtain domain-invariant embeddings with two critical char-
acteristics, intra-class compactness and inter-class separa-
bility. Extensive experiments conducted on the two datasets
well demonstrate the effectiveness of SCA.

1. Introduction

In many real-world application of visual recognition, the
training and testing data distributions are often different due
to dataset bias [41]. This distribution discrepancy decreases
the generalization capability of the learned visual represen-
tations. One example is that the model trained on synthetic
images fails to generalize well on the real-world images. To
eliminate the effect of the dataset bias, a common used strat-
egy is unsupervised domain adaption (UDA). In UDA, we
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Figure 1. Visualization of cross-domain embeddings for task A —
W on Office-31 [35]. We present the 2D visualization of t-SNE
for embeddings learned by (a) ResNet (trained on source images
only), (b) domain alignment (based on JMMD [28]), and (c) SCA
(ours). For the first row, different colors denote data of differ-
ent object categories. For the second row, red color represents
the data of W, and blue color represents data of A. Under SCA,
different classes are well-separated, and the two domains are well-
aligned on the class level. Best viewed in color.

(b) Domain alignment

are provided with a labeled source dataset and an unlabeled
target dataset, and the goal is to learn a model on the source
dataset which minimizes the test error on the target dataset.

In literature, recent UDA methods [10, 28, 9, 42, 43, 25]
adopt deep neural networks to learn a shared embedding
space where the distribution discrepancy can be reduced.
These methods typically involve two objectives: 1) learn
embeddings that maintain a low classification error on the
source dataset; 2) make embeddings domain-invariant, such
that the classifier trained on the source can be directly used
on the target dataset. To learn domain-invariant embed-
dings, recent methods usually minimize some measure of
domain variance [43, 28, 25] (such as correlation distance
[40]) or adopt the adversarial learning [10, 9, 42]. However,
this line of methods have an intrinsic limitation: they only
focus on reducing the global distribution discrepancy, with-
out exploiting the class-level relations among the source and



target images. Thus, even with perfect distribution align-
ment, the images with different labels from different do-
mains might be misaligned nearby in the embedding space.
As shown in Fig. 1(b), domain-level alignment (based on
JMMD [28]) has the ability to reduce distribution discrep-
ancy. However, these exists the semantic misalignment
problem in the aligned embeddings. For examples, some
samples from different classes are mapped nearby in the
embedding space. This semantic misalignment is detrimen-
tal to the classifier performance on the target dataset.

Motivated by this problem, we present a similarity con-
strained alignment (SCA) method for UDA. The working
mechanism of SCA is that it can align the distributions,
while preserving the class-level relations among source and
target images. Specifically, we add a similarity-preserving
constraint for the source and target images during domain
alignment. The impact of the similarity-preserving con-
straint is two-fold. 1) Class unification: images with same
labels should be pulled together in the embedding space;
2) class separation: images with different labels should be
pushed apart. In practice, the similarity-preserving con-
straint can be implemented by minimizing the triplet loss
[37]. During training, SCA learns domain-invariant em-
beddings by optimizing an objective that includes both the
domain confusion loss and the triplet loss [37]. First, the
domain confusion loss aims at mapping the source and tar-
get distributions into a shared feature space. Several exist-
ing methods can be directly used to achieve this goal. In
this paper, we adopt JIMMD [28] to align the data distribu-
tions. Second, the triplet loss is to enhance the discrimina-
tive ability of the deeply learned embeddings, so that source
and target embeddings possess the properties of intra-class
compactness and inter-class separability.

Unfortunately, the target dataset is totally unlabeled, so
the similarity-preserving constraint cannot be directly im-
posed for the source and target images. In the absence of
target labels, we use a classifier trained on source images
to assign pseudo labels for target images. To eliminate the
influence of the incorrectly assigned images, we only select
images with high predicted scores for training. Given la-
beled source images and pseudo-labeled target images, we
utilize the triplet loss [37] to constrain their similarity in
the embedding space. Specifically, if a source image and
a target image are with the same class label, their corre-
sponding embeddings are supposed to be aligned nearby,
and vise versa. In this manner, the semantic misalignment
problem can be alleviated. As shown in Fig. 1(c), we ob-
serve that the embeddings learned by our method preserve
the two class-level relations: 1) the embeddings that belong
to the same class are close (class unification); 2) the em-
beddings that belong to different classes are separated well
(class separation). Based on the domain-invariant embed-
ddings learned by SCA, the classifier can generalize well

on the target dataset.

To summarize, this paper is featured in three aspects.
First, to our knowledge, this is an early work that ex-
plores the class-level relations across domains under the
UDA setting. Second, by consolidating the idea of domain-
level alignment and metric learning, this paper presents a
novel similarity constrained alignment (SCA) method for
UDA. SCA attempts to reduce the distribution discrepancy
while preserving the underlying difference and common-
ness among source and target images. Thus, the class-level
misalignment problem can be alleviated. Third, extensive
experiment results demonstrate that the proposed method
improves the generalization ability of the learned classi-
fier. Moreover, the proposed method is capable of produc-
ing competitive accuracy to state-of-the-art methods on two
UDA benchmarks.

2. Related Work

Many methods are proposed to solve the domain adap-
tation problem. This section briefly reviews works that are
closely related to our paper.

Unsupervised domain adaptation. Unsupervised do-
main adaptation methods attempt to minimize the shift be-
tween source and target data distributions. Some methods
focus on learning a mapping function between source and
target distributions [20, 13, 8, 39]. In [39], Correlation
Alignment is proposed to match the two distributions. In
[8]. The source and target domain are aligned in the sub-
space described by Eigenvectors.

Other methods seek to find a shared feature space for
source and target distributions [9, 43, 25, 28]. Long et
al. [25] and Tzeng et al. [43] utilize the maximum mean
discrepancy (MMD) metric [14] to learn a share feature
representations. Moreover, the joint maximum mean dis-
crepancy (JMMD) [28] is proposed to align the joint dis-
tributions of multi-layers across domains. Recent methods
[10,9,42,46, 3, 31] adopt adversarial learning [ 2] to learn
representations that are not able to distinguish between do-
mains. The gradient reversal algorithm (RevGrad) [9] is
proposed to learn the domain invariant feature. Tzeng et al.
[42] propose a generalized framework for adversarial do-
main adaptation. Pei et al. [31] propose a multi-domain
adversarial network for fine-grained distribution alignment.
SimNet [32] proposes to classify an image by computing
its similarity to prototype representations of each category.
Some methods [17, 2, 23, 7] use the adversarial learning
to learn a transformation in the pixel space from one do-
main to another. CYCADA [17] maps samples across do-
mains at both pixel level and feature level. In this paper, we
also attempt to reduce the distribution discrepancy, and we
are more concerned with preserving the class-level relations
among the source and target datasets.

Self-training. Our method is related to self-training, a
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Figure 2. Framework of the similarity constrained alignment (SCA) method. SCA has the ability to align the distribution, while preserving
the class-level relations among source and target images. Thus, if a source image and a target image are with the same class label, their
corresponding embeddings are supposed to be aligned nearby, and vise versa. Due to the target dataset is unlabeled, we assign pseudo
labels for the target images (see Section 3.2.2). In this figure, different colors denote different domain distributions and different shapes

represent different classes.

strategy in which the predictions of a classifier on the unla-
beled data are used to retrain the classifier [22, 5, 21, 46, 33,

]. The assumption of self-training is that an image with
the high predicted score is more likely to be classified cor-
rectly. In unsupervised domain adaptation, some methods
[46, 4, 36] use pseudo-labeled images to improve classifier
accuracy on the target dataset. Zhang et al. [40] propose a
progressive way to select pseudo-labeled images for train-
ing the classifier. Chen et al. [4] use two classifiers to assign
labels for target images. Saito [36] adopt three asymmetric
classifiers to improve the quality of pseudo labels. Unlike
these methods, we leverage the selected images with their
pseudo-labels for semantic alignment instead of retraining
the classifier. This practice provides a new way to utilize
unlabeled data for learning feature representations.

Deep Metric learning. Deep metric learning [6, |1, 44,

, 37, 18] aims to learn discriminative embeddings such
that similar samples are nearer and different samples are fur-
ther apart from each other. The most widely used loss func-
tions for deep metric learning are the contrastive Loss [0]
and triplet loss [37]. The problem settings of these works
are different from ours. We aim to reduce the distribution
discrepancy and utilize the triplet loss [37] to preserve the
class-level relations among images from the two domains.
Since the target domain is unlabeled, we assign pseudo la-
bels for the target images.

3. Proposed Method
3.1. Overview

In UDA, we are provided with a set of labeled images
from the source dataset and a set of unlabeled images from
the target dataset, where the data distributions of the two
datasets are different. For the source dataset, we denote it
as Dy = {(x§,y$)}:=,, where x} is the i-th source image,

y; is its label, and n is the total number of images on the
source dataset. Similarly, we denote the target dataset as
D; = {x}}}L,, where x} is the i-th target image and n; is
the total number of images on the target dataset. Our goal
is to leverage labeled source images and unlabeled target
images to learn a classifier that can generalize well on the
target dataset.

It is worth repeating that, for UDA, we not only deal
with the whole distribution discrepancy that caused by the
dataset bias. We also consider preserving the class-level
relations among source and target images. To this end, we
present a similarity constrained alignment (SCA) method
for UDA. As shown in Fig. 2, the goal of SCA is two-fold,
1) it learns a domain-invariant embedding space to align the
whole distributions; 2) it preserve the underlying difference
and commonness among source and target images. Based
on the learned embeddings, we can train a classifier that can
generalize well on the target dataset.

In Section 3.2.1, we briefly describe the domain-level
alignment method used in this paper. In Section 3.2.2, we
introduce the similarity-preserving scheme. In Section 3.3,
we have a discussion about the proposed method.

3.2. Similarity Preserving Alignment

In this paper, we utilize the deep convolution neural net-
work to learn the classifier. For K-way classification with a
cross-entropy loss, this is corresponding to,
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where L(-,-) is the cross-entropy loss, where gg(-) is the
feature extractor, and f(-) is the classifier trained on the
source dataset.



In general, the classifier f(-) is a simple fully-connected
network followed by a softmax over the classes . Due the
dataset bias [41], the classifier trained on the source dataset
often fails to generalize well on the target dataset. To al-
leviate this problem, we present a similarity constrained
alignment (SCA) method. SCA can eliminate the distribu-
tion discrepancy, while preserving the underlying difference
and commonness among source and target images. In prac-
tice, SCA learn domain-invariant embeddings by optimiz-
ing over an objective that includes both the domain-level
alignment loss and the similarity-preserving loss.

3.2.1 Domain-level alignment

Domain-level alignment focuses on reducing the whole
distribution discrepancy between the source and target
datasets. In the community, recent deep domain adaptation
methods utilize a domain confusion loss to align the dis-
tributions. These methods usually adopt the discrepancy-
based metric [14, 28] or adversarial adaptation [9] to design
the domain confusion loss function.

Following the practice in [28], we build the domain-
level alignment loss by using the JMMD metric. The
JMMD formally reduces the discrepancy in the joint dis-
tributions of the activations in domain-specific layers L, i.e.
P(Z*',...,Z°1Fl) and Q(Z', ... Z!*!). Thus, the loss
function of domain-level alignment is written as,
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where n = n,, z'* denotes the activations of the target im-
age in the layer ¢, and z°¢ denotes the activations of the
source image in the layer /. k‘ is the kernel function in a
reproducing kernel Hilbert space (RKHS).

We adopt the ResNet-50 [15] as the backbone network.
We discard its last layer and add two fully connected layers
(a bottleneck layer, and a classifier layer) for our task. In
practice, we align the joint distributions of the activations
in two newly added layers.

3.2.2 Similarity-constrained Scheme

Domain-level alignment only aims at reducing the whole
distribution discrepancy, but it can mix up the class-level re-
lations among the source and target images. Consequently,
there exists a semantic misalignment problem, i.e., source
images of class A might be falsely aligned to target im-
ages of class B in the embedding space. This semantic mis-
alignment problem directly degrades accuracy on the target
dataset. To mitigate this problem, we should consider the

class-level relations of images across two datasets. In this
paper, we propose to preserve the underlying difference and
commonness among images during the domain alignment.

Class-level relations. A general assumption behind the
similarity-preserving alignment is that if a source image and
a target image are with the same class label, their corre-
sponding embeddings are supposed to be aligned nearby,
and vise versa. On the top of domain-level alignment, we
add a similarity-preserving constraint to maintain two class-
level relations among source and target images. In this pa-
per, the two class-level relations are defined as follow.

e Class separation. Images from different domains and
with different labels, should be mapped far apart in the
embedding space.

e Class unification. Images from different domains but
with same labels, should be mapped nearby in the em-
bedding space

Similarity-preserving loss function. To mitigate the
semantic misalignment problem, we want images to pre-
serve the above class-level relations during the domain-level
alignment. Let D; ; = ||gg(x;) — gg(xj)Hg measures the
distance between two images in the feature space, where
go(+) is the feature extractor. If x; and x; are with the same
label, we want D; ; to be small, corresponding to the class
unification. If z; and x; are with different labels, we want
D; ; to be large, corresponding to the class separation.

Based on the above analysis, we utilize the triplet loss
[37] to achieve similarity-preserving constraint. Given an
anchor image x,, a positive image T, and a negative image
Zp, we minimize the loss,

Es(a) = Z

a,p,n
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[m + Da,p - Da,n]+ 9 (3)

where z, and x, is a positive pair (their labels y, and y,
are same), , and x,, is a negative pair (their labels ¥, and
Yy, are different). m is the margin that is enforced between
positive and negative pairs.

This loss encourages the distance between x, and pos-
itive image x,, to be smaller than the distance between z,
and negative z,, by the enforced margin m.

Training data construction. The similarity-preserving
loss supervises the embedding learning, so that class-level
relations among source and target images can be preserved.
When optimizing the similarity-preserving loss, we should
pay attention to two crucial things, 1) the target dataset is
totally unlabeled; 2) the construction of training triplet sam-
ples is non-trivial. For these two things, we propose corre-
sponding techniques.

(i) Label estimation for unlabeled target data. The
target dataset is totally unlabeled, so the semantic relations
cannot be directly built. In the absence of target labels, we



use a classifer pre-trained on the source images to assign
labels for unlabeled target images.

To ensure the accuracy of the pseudo label, we adopt
three tactics. (a) domain-level alignment. When pre-
training the classifier, we also utilize the dataset-level to
reduce the harmful influence of dataset bias. This prac-
tice improves the performance of the classifier on the target
dataset, so that more accurate pseudo labels can be gained.
(b) Threshold T'. Intuitively, the image with the high pre-
dicted score is more likely to be classified correctly. Thus,
we only select target images with predicted scores above a
high threshold T for building the semantic relations. Note
that the threshold 7' is constant during training. (c) Progres-
sive selection. With the help of the similarity-preserving
alignment, the classifier will improve itself during training.
This motivates us to re-assign the label for the target image
every several iterations (K). By doing so, the target images
can be progressively selected for the class-level alignment.

(ii) Sample triplet images. Given labeled source im-
ages and pseudo-labeled target images, we now introduce
the way to construct triplet samples. The possible number
of triplets is large, and optimizing all triplets is computa-
tionally infeasible. To avoid this problem, we follow the
sampling strategy in [16]. For the labeled source images, we
randomly select C' classes and randomly select K images of
each class. In this way, we select C'K source images. Sim-
ilarly, we select C K pseudo-labeled target images. Thus,
we get a mini-batch of 2C'K training images and perform
triplet sampling in each mini-batch.

3.2.3 Opverall objective

We present a similarity constrained alignment (SCA) for
UDA. During the training, SCA jointly optimizes an ob-
jective that includes both a domain-level alignment loss and
a similarity-preserving loss, such that more discriminative
domain-invariant embeddings can be gained. On the top of
learned embeddings, we can train a classifier that general-
izes well on the target dataset. The final objective of SCA
is written as,

»Ccan = L:c + aﬁd + ﬁ’csa (4)

where L. is the classification loss, L4 is the domain-level
domain alignment, and L is the similarity-preserving loss.
The « and the 3 control the relative importance of domain-
level alignment and similarity preservation, respectively.

3.3. Discussion

Collaborative working mechanism. The working
mechanism of SCA is that it can align the distributions,
while preserving the class-level relations among source and
target images. On the one hand, if we only use the domain-
level alignment to reduce the distribution discrepancy, the

resulting embeddings would exist the semantic misalign-
ment problem. On the other hand, the similarity-preserving
constraint can map a source image and a target image
nearby, if they are with the same class label. Thus, the
similarity-preserving constraint can be viewed as the class-
level distribution alignment. With the collaborative supervi-
sion of them, we can reduce the distribution at both domain
level and class level, i.e., learning domain-invariant embed-
ddings that preserve the class-level relations. In our exper-
iment, we validate this collaborative working mechanism.
Moreover, we also study the impact of only adopting the
similarity-preserving constraint on the transfer accuracy.

Closely related to our work, Motiian et al. [30] also study
the class-level alignment. Our work is different from [30]
in two aspects, 1) the setting of [30] is supervised domain
adaptation, where the labeled target images are available; 2)
the authors of [30] do not consider the domain-level align-
ment, while our work collaboratively aligns the distribu-
tions at both domain and class level.

Label estimation. To construct class-level relations
among the source and target images, we need to estimate
the labels of unlabeled target images. In this paper, we sim-
ply adopt a classifier pre-trained on the source images to
assign pseudo labels for unlabeled target images. We only
select target images with their scores above a certain thresh-
old T'. Note that we do not adaptively adjust the threshold
T asin [46]. In practice, we set the threshold 7" a high value
(0.9) to guarantee that the selected samples are more likely
to be predicted correctly.

During the training, the classifier will gradually improve
itself, so we re-assign pseudo labels every several iterations.
In this way, more and more target images will be progres-
sively selected for training.

How to use pseudo-labeled target images? Existing
methods [22, 5, 21, 46, 33, 19] usually utilize the pseudo-
labeled target images for training classifier directly. In this
paper, the pseudo-labeled images are not used for training
the classier, but for building the class-level relations. We ar-
gue that there exist a set of wrongly pseudo-labeled images,
which can directly bring a bad influence to the classifier. To
avoid this problem, we use selected target images for opti-
mizing the similarity-preserving loss function.

Moreover, as analyzed in [24, 45], cross-entropy loss en-
courage the features of different classes staying apart. Thus,
using selected target images for training classifier can be
viewed as an indirect way to preserve the class separation
relation. However, the cross-entropy loss does not consider
the class unification relation. In contrast, we adopt pseudo-
labeled target images and source images for constructing
both class unification and separation relations.



Figure 3. Visual examples of the Office-31 dataset. From top
to bottom: DSLR images (high-resolution), Amazon images
(medium-resolution), and Webcam images (low-resolution).

Pascal ImageNet Caltech

Figure 4. Visual examples of the ImageCLEF-DA dataset. From
top to bottom: Caltech-256 images, ImageNet ILSVRC 2012 im-
ages, and Pascal VOC 2012 images.

4. Experimental Evaluation
4.1. Datasets

We evaluate the proposed unsupervised domain adap-
tation method on two datasets, i.e., Office-31 [35] and
ImageCLEF-DA'.

Office-31 is a widely used benchmark for visual do-
main adaptation. It contains 4,652 images and 31 cate-
gories collected from three distinct domains: Amazon (A),
Webcam (W) and DSLR (D). The images in DSLR are cap-
tured with a digital SLR camera and have high resolution.
Amazon consists of images downloaded from online mer-
chants (www.amazon.com). These images are of products
at medium resolution. The images in Webcam are collected
by a web camera, and they are of low resolution. We eval-
uate the proposed method across six transfer tasks A — W,
D—-WW-—-DA—-D,D— Aand W — A. We report
the results following the protocol in [25].

ImageCLEF-DA is a benchmark dataset for Image-
CLEF 2014 domain adaptation challenge. It contains three
subsets, including Caltech-256 (C), ImageNet ILSVRC
2012 (I), and Pascal VOC 2012 (P), and each subset is con-
sidered as a domain. There are 12 categories and each cat-
egories contains 50 images. We use all domain combina-
tions and build 6 transfer tasks: I — P, P - L1 — C, C
— 1, C — P, and P — C. We report the results following
the protocol in [28]. Sample images of the Office-31 and
ImageCLEF-DA are shown in Fig 3 and Fig 4, respectively.

http://imageclef.org/2014/adaptation

Algorithm 1 Similarity Constrained Alignment (SCA).
1: inputs
2. source images and labels {(x],y?)}: <,
unlabeled target images {xt ;” 1-
threshold (7"), max number of steps (.5), and number
of SCA updates per step (K).
stage 1: pre-train a classifier:
3: train a classifer by minimizing Eq. 1 and Eq. 2.
stage 2: class-level alignment:
4: for s=1;s < S;s ++ do
use classifer to assign pseudo labels for target images
with predicted score above T'.
fork=1; k< K;k ++ do
train SCA by minimizing Eq. 4.
end for
end for

W

o 2 3D

Through these images, we can observe the dataset bias dis-
cussed in [41].

4.2. Implementation Details

We implement our method on pytorch framework, and
fine-tune from ResNet-50 model [15] pre-trained on the
ILSVRC 2012 dataset [34]. All the images are resized to
256 x 128. We discard its last layer and add two fully con-
nected layers for our task. The first layer has 256 units,
and the second goes down to the number of training classes.
During training, we adopt random flipping and random
cropping as data augmentation methods. We use stochas-
tic gradient descent (SGD) for optimization, and adopt the
same INV learning rate strategy as in RevGrad [9]. The
learning rate decreases gradually after each iteration from
0.001, the momentum is set to 0.9, and the weight decay is
set to 0.0004. We set « = 1 and 5 = 1 in Eq. 4.

We adopt a two-stage training procedure: we first initial
the classifier by minimizing Eq. 1 and Eq. 2, then train the
whole network by minimizing Eq. 4. The training proce-
dure is summarized in Algorithm 1. For the stage one train-
ing, we train the network for 5000 iterations. For the stage
two training, we training the remaining 30000 iterations.
We set threshold 7' = 0.9, max number of step S = 15, and
number of SCA updates per step K = 2000 .

4.3. Experimental Results

Compared Apporaches. In this section, we mainly
compare the proposed method with several state-of-the-
art methods, including DAN [25], RTN [27], JAN [28],
RevGrad [9], MADA [31], SimNet [32], iCAN [46], and
CDAN [26]. These methods are all based on the deep neural
network (ResNet-50 [15]) to learn domain-invariant embed-
dings. For the fair comparison, the results of these methods
are directly reported from their original papers.
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Method [ASWJ[ASD[W—A[W—D[D—A[D—W]Avg.

ResNet-50 [15] | 72.5 | 73.6 | 599 | 993 | 61.0 | 93.6 |76.7
DAN [25] 80.5 | 78.6 | 62.8 | 99.6 | 63.6 | 97.1 |80.4
RTN [27] 845 | 775 | 648 | 994 | 66.2 | 96.8 |81.6
JAN [28] 858 | 85.0 | 70.0 | 99.7 | 68.9 | 96.7 |84.4
RevGrad [ 82.0 | 79.7 | 674 | 99.1 | 682 | 969 |82.2

1

MADA [31] 90.0 | 87.8 | 664 | 99.6 | 70.3 | 97.4 |85.2
SimNet [32] 88.6 | 853 | 71.8 | 99.7 | 734 | 98.2 |86.2
iCAN [40] 92.5 |1 90.1 | 699 | 100.0 | 72.1 | 98.8 |87.2
CDAN-RM [26]| 93.0 | 89.2 | 69.4 | 100.0 | 70.2 | 98.4 |86.7
CDAN-M [26] 93.1 | 934 | 703 | 100.0 | 71.0 | 98.6 |87.7
SCA 93.5 | 89.5 | 72.7 | 100.0 | 72.4 | 97.5 |87.6
Table 1. Comparison of different methods for unsupervised do-
main adaptation on the Office-31 dataset. The best results are in
bold.

Method [I=P[P—I[I-C[C—I[C—P[P—C[Avg.
ResNet-50 [15] [74.8[82.9[91.5[78.0 66.2 | 87.2 [80.1
DAN [25] 745822928 [86.3 | 69.2 | 89.8 | 825
RTN [27] 74.6 |85.8 943 (859|717 | 91.2 | 839
RevGrad [9]  [75.0(86.0| 962 | 87.0 | 74.3 | 91.5 | 85.0
JAN [28] 76.8 | 88.0 | 94.7 | 89.5 | 74.2 | 91.7 | 85.8
MADA [31]  |75.0|87.9]96.0 | 88.8| 752 | 92.2 |85.8
iCAN [46] 79.5|89.7| 947 | 89.9 | 78.5 | 92.0 | 87.4

CDAN-RM [26] | 77.2 | 88.3 | 98.3 | 90.7 | 76.7 | 94.0 | 87.5
CDAN-M [26] |76.2|89.5]|96.0|91.2| 75.0 | 93.5 | 86.9
SCA 78.1189.2196.8 913 | 782 | 94.0 | 87.9

Table 2. Comparision of different methods for unsupervised do-
main adaptation on the ImageCLEF-DA dataset. The best results
are in bold.

Comparison on the Office-31 dataset. We compare the
proposed method with the recent state-of-the-art methods in
Table 1. Our method (SCA) gains 87.6% accuracy, which
is the second best performance on the Office-31 dataset.
Note that our method is comparable with CDAN-M [26]
(87.6% vs. 87.7%). Besides, our method achieves the
highest performance on three tasks (A — W, W — A, and
W — D). Our method is higher than MADA [31] (87.6%
vs. 85.2%). Moreover, our method outperforms SimNet,
iCAN, and JAN by 1.4%, 0.4%, and 3.2%, respectively.

Comparison on the ImageCLEF-DA dataset. In Ta-
ble 2, we compare the proposed method with state-of-the-
art methods. SCA obtains 87.9%, which outperforms the
other methods. The accuracy of our method is 0.4% higher
than the second best method CDAN-RM [26]. Moreover,
the proposed method respectively outperforms the MADA
[31], iCAN [46], and JAN [28] by 2.1%, 0.5%, and 2.1%.
Specifically, our methods achieves the highest performance
on two tasks (C —ITand P — C).

The comparisons on the Office-31 dataset (Table 1) and
the ImageCLEF-DA dataset (Table 2) demonstrate the ef-
fectiveness of the proposed method.

Method [A—-W[A—D[W—A[W—D[D—A[D—-W [Avg.
B (Basel) [ 765 | 780 [ 640 [ 99.0 | 650 | 948 [79.6
B+D 872 | 849 | 69.8 | 992 | 678 | 96.5 | 84.2
B+S 850 | 87.0 | 67.2 | 994 | 675 | 982 | 84.1
SCA 935 | 895 | 727 [100.0 | 72.4 | 975 | 876

Table 3. Ablation experimental results of SCA. The results are on
the Office-31 dataset. “B” (Basel.) denotes the baseline trained
only the source dataset, “ S” represents the similarity-preserving
constraint, and “D” denotes the domain-level alignment. SCA is
the full system (“B + D + S”).
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Figure 5. Sensitivity to parameter 8 (weight of the similarity-
preserving constraint) in Eq. 4. A larger 8 means that the con-
straint has a greater impact on the distribution alignment.

4.4. Component analysis

In this section, we present step-by-step evaluation to an-
alyze the effectiveness of SCA.

Ablation study. We investigate the impact of different
components in SCA. We conduct the experiment on the
Office-31 and report the results on Table 3.

The baseline is the network that we modify from ResNet-
50, and it does not adopt any domain adaptation technique.
In this paper, we adopt JIMMD [28] for the domain-level
alignment, and the result of “B+ D” is consistent with the
experiment in [28]. Compared with “B” (Basel.), “B + D”
achieves higher performance, which indicates that it has
ability to reduce the distribution discrepancy.

On the top of domain-level alignment, the similarity-
preserving constraint further brings 4+3.4% improvement in
average accuracy. This well demonstrates the importance of
preserving underlying difference and commonness among
source and target images.

As discussed in 3.3, the similarity-preserving constraint
can be viewed as a way to align distributions at class level.
We further study its impact on the transfer accuracy, and
report its results (“B+S”) in Table 3. We can observe that
only adopting the similarity constraint can also improve the
baseline performance it gains +4.5% improvement over the
baseline in average accuracy. This indicts that preserving
class-level relations benefits the transfer accuracy.
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Figure 6. Performance of various methods on three tasks (A — W,
W — A, and D — A) of Office-31. Reverse Gradient (RevGrad)
[9] is a domain-level alignment method based on adversarial learn-
ing. SCA-Rev is the similarity-preserving alignment based on
RevGrad.

Weight of the similarity-preserving constraint. The
B in Eq. 4 control the importance of similarity-preserving
constrain. A larger § means that the constraint has a
greater impact on the distribution alignment. In Fig 5, we
demonstrate the transfer accuracy of SCA by varying the
B € {0,0.1,0.5,1,2,5} on three tasks, A = W, W — A,
and D — A. Note the when (3 is set to 0, the similarity-
preserving constrain has no impact. As shown in Fig. 5,
when the f3 increases from O to 1, the performance on three
tasks grow and reach the best at 5 = 1. However, when
the S is too large (/3=5), the accuracy will drop by a large
margin. Empirically, the best parameter /3 is between 0.5 to
2 in our method.

Domain-level alignment method. As discussed in
Section 3.2.1, we use a discrepancy-based metric JIMMD
for domain-level alignment. We note that the proposed
similarity-preserving constraint can work collaboratively
with other domain-level alignment methods. To validate
this, we conduct the experiment on three tasks of Office-
31: A—> W, W — A, and D — A. We adopt an adversarial
adaptation method named Reverse Gradient (RevGrad) [9]
for domain-level alignment. Based on RevGrad, we con-
struct the similarity constrained alignment network (SCA-
Rev), and report the results on the Fig. 6.

As shown in Fig. 6, RevGrad can improve the accu-
racy of baseline, which indicates it has ability to reduce the
distribution discrepancy. Moreover, SCA-Rev further im-
proves the accuracy of RevGrad. SCA-Rev gains +5.7%,
+4.0% and 5.1% improvements over RevGrad on A — W,
W — A, and D — A, respectively. On the one hand, the
results demonstrate that preserving the two class-level rela-
tions is crucial for the domain-level alignment. On the other
hand, these results indicate that the similarity-preserving
constraint can work collaboratively with other domain-level
alignment methods.

@Basel.

118

11 1.10
H H I ﬁ ]
A->W W->D
Figure 7. Distribution discrepancy measured by .4-distance on
tasks A — W and W — D. Three methods are compared: (a)

baseline (Basel.), (b) domain-level alignment (Basel. + D), and
(c) SCA.

O Basel.+D OSCA
170 } 1.65

A-distance

Distribution discrepancy. The domain adaptation the-
ory [1, 29] introduces .A-distance to measure the distribu-
tion discrepancy . The A-distance is defined as d4 =
2 (1 — 2¢), where ¢ is the generalization error of a classi-
fier trained to discriminate source and target. We report the
d_4 on two tasks (A — W, W — D) of Office-31 with fea-
tures of baseline, domain-level alignment (basel. + G), and
SCA. As shown in Fig. 7, d 4 on SCA features is much
smaller than d 4 on the baseline and domain-level alignment
features. This indicates that SCA features can reduce the
distribution discrepancy more effectively.

5. Conclusion and Future Work

In this paper, we present the similarity constrained align-
ment (SCA) method to address the semantic misalignment
problem. SCA enforces a similarity-preserving constraint to
maintain the underlying difference and commonness among
the source and target images. In the absence of target la-
bels, we use a classifier trained on source images to assign
pseudo labels to the target images. Given labeled source
images and pseudo-labeled target images, the similarity-
preserving constraint can be implemented by minimizing
the triplet loss. Under the collaborative supervision of
the domain alignment loss and the triplet loss, SCA learns
domain-invariant embeddings with two important proper-
ties, i.e., intra-class compactness and inter-class separabil-
ity. Thus, the distributions can be aligned at both domain
and class level, which alleviates the semantic misalignment
problem. The experimental results on two benchmarks
demonstrate that the proposed SCA is effective and com-
petitive with the state-of-the-art methods. In the future, we
will extend this idea to multiple target domains, where the
class-level relations among multi-domains will be explored.
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